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Abstract

Accurate forecasting of Photovoltaic (PV) generation output is important in operation of high PV-penetrated
power systems. In this paper, an adaptive uncertainty modelling method for forecasting error is proposed to
improve the prediction accuracy of PV generation. The proposed method models the uncertainty in forecast data
using Kernel Density Estimator and guarantee the provision of accurate expected value. Neural Network model
is then constructed by the developed uncertainty model to forecast the PV output. The actual confidence level is
traced within the day and injected as an input to the Neural Network model by observing the Mean Absolute
Prediction Error (MAPE) and Unscaled Mean Bounded Relative Absolute Error (UMBRAE). The proposed
method is tested with various significant changes of weather condition and proved to have promising
performance on PV generation forecasting. Thus, the developed adaptive uncertainty model can be further used
in power system planning that have high-penetration energy sources with stochastic behavior.
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Abstrak

Peramalan yang akurat dari keluaran Photovoltaic (PV) penting dalam pengoperasian sistem tenaga dengan
penetrasi PV yang tinggi. Dalam makalah ini, metode pemodelan ketidakpastian adaptif untuk peramalan galat
diusulkan untuk meningkatkan akurasi prediksi keluaran PV. Metode yang diusulkan memodelkan
ketidakpastian dalam data perkiraan menggunakan Kernel Density Estimator (KDE) dan menjamin penyedian
hasil prediksi yang akurat. Model Jaringan Syaraf Tiruan kemudian dibangun dengan model ketidakpastian
yang dikembangkan untuk meramalkan keluaran PV. Tingkat kepercayaan aktual dilacak di siang hari dan
disuntikkan sebagai masukan pada model Jaringan Syaraf Tiruan dengan mengamati Mean Absolute Prediction
Error (MAPE) dan Unscaled Mean Bounded Relative Absolute Error (UMBRAE). Metode yang diusulkan diuji
dengan berbagai perubahan kondisi cuaca yang signifikan dan terbukti memiliki kinerja yang menjanjikan pada
peramalan PV. Dengan demikian, model ketidakpastian adaptif yang dikembangkan dapat digunakan lebih
lanjut dalam perencanaan sistem tenaga yang memiliki sumber energi penetrasi tinggi dengan perilaku
stokastik.

Kata Kunci: model ketidakpastian, peramalan, prediksi galat

1. Introduction

As the effect to achieve sustainable development in developing county, penetration of renewable
energy source (RES) is increasing significantly up to 20% of country’s total energy mixture. Handling
this RES in the system means to handle uncertainty in operation. For Power System Operator (PSO),
RES injects stochastic power to the system which need some spare of reserve if the actual output of
RES falls outside the uncertainty range. The greater the uncertainty leads to a greater spare capacity
which is increasing the cost of electricity generation. Thus, providing uncertainty modeling will give
PSO an insight to handle stochastic behavior of RES even though it will not necessarily solve
uncertainty in the analysis because it still contains forecast error from the actual data.

To provide reliable strategy, PSO needs to foresee the system’s condition in next time horizon (hour,
day, week, month or even year). However, the forecasting result will be polluted by prediction error.
Especially, when prediction only based on short range data. By this, PSO will see this forecast-related
strategy as a less favorable option and go with the old conventional strategy. In fact, there are several
techniques to have accurately forecast such as Artificial Intelligent (AI), Evolutionary Algorithm (EA)
and Statistical Method (SM). Neural Network (NN) is one of well-known Al to forecast load demand
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or RES, but it needs long historical data to build a proper model. This leads to an inflexible model that
need to change when the input actual data much differs from the trained data. EA such as Particle
Swarm Optimization, Genetic Algorithm, Bat Algorithm has also proved to handle forecasting
problem but they need an iterative process to find best single objective or multi objectives. In a
practice with high renewable energy penetration, EA (Hansen et a/, 2009) will be time-consuming and
provide worse prediction because of input data doesn’t remain constant. Meanwhile, the statistical
method with regression as the base of error between each data point also has some drawback. The
prediction will fail when the system is nonlinear. Besides, SM needs at least 7 days 15-minutes data as
training data which also face the similar inflexible issue as NN when the data changes dynamically.

Uncertainty modeling has been applied in many works such as power system reserve planning,
chemical solution process, combustion chamber process and medical research by two distinct
approaches: simulation technique and statistical analysis. The most reliable simulation technique is
done by Monte Carlo Simulation (MCS). MCS will generate some scenarios (several hundred or
thousand) from random number following designated probability distribution and find the best and
worst scenario to be handled by an operator. (Nikoobakht et al, 2017) presents the stochastic wind
power generation with possible scenarios generated by MCS. Wind power uncertainty is assumed as
discrete distribution in the form of Weibull distribution and continuous probability distribution
functions for security constrained unit commitment problem. (Ding et al, 2017) performed Monte
Carlo simulation and used confidence level to interpret PV’s generation uncertainty. Confidence
interval of forecasted value in 10,000 generated scenarios. The result shows that by modeling the
uncertainty, less PV generation is curtailed and fewer network losses are achieved in comparison with
a deterministic approach.

While most of the methods used to have initial probability distribution and remains constant till the
end of simulation, there are several distinct methods emphasized the importance of adaptability.
(Huang et al, 2012) used analytical method to model uncertainty in basic system load to determine
electricity price. This paper emphasized the needs of proper proposal distribution to find correct target
distribution for probabilistic value of system load. Even though it is time efficient, this method failed
to operate in high probability event due to its algorithm. The complicated ways to have sequential and
adaptive learning to determine the importance region will trapped the solution into the incorrect
solution when the importance region is slightly shifted. (Aien et al, 2014) used the analytical method
due to probability distribution of Solar Cell Generator (SCG) and Wind Turbine Generator (WTG).
The algorithm is worked by assumption of using beta distribution for SCG and Weibull distribution
for WTG. The author emphasized the importance of correlation between uncertain variables in the
system. However, this correlation is not well expressed. (Negnevitsky et al, 2015) used normal
distribution to describe wind power generation uncertainty even though the wind power generation
prediction errors do not fit a normal distribution. Thus, this can affect the accuracy of the result if
improper error distribution is used.

It can be concluded that, for modeling uncertainty, both simulation and statistical method need to use
proper initial probability distribution function (PDF), meanwhile, the real-time probability distribution
might not always the same with common PDF such as normal distribution, Weibull distribution, beta
distribution etc. In MCS, the range of uncertainty is controlled by the degree of confidence level which
means all observation point will vary to the same uncertainty degree. There is no adaptive ability to
sense the actual uncertainty level. In statistical analysis, for some case with importance-relation matrix
in between uncertain variables, the method is prone to inaccurate results if the initial importance or
quantile is incorrect. Thus, proper modeling of uncertainty can be considered not only from
understanding input data characteristics such as standard deviation, proper probability distribution, and
quantile (time interval) but also adaptability to sense real time uncertainty and further prepare
corrective-ability. Thus, this work will consider the adaptive correction of prediction error that used
only day ahead prediction and real-time data for uncertainty modeling. By this, the proportion of
uncertainty in the system will be easily investigated for further used in every forecasting method. The
rest of this paper is organized as follows. Section 2 will present steps of proposed method. The result
and discussion will be described in Section 3. The conclusion will be presented in Section 4.
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2. Methods

The non-parametric distribution function will be used to model the uncertainty, overcoming the data
shortage (likely 24 hourlies previous day data). By non-parametric method, the analysis can sense the
variation of the model if any change happened in the actual metering. Kernel distribution (Bowman
and Azzalini, 1997) will adapt the change in the data and generate a PDF by a Kernel Density
Estimator (KDE). The smoothness of density curve can be controlled from its bandwidth value h
correlate to n sample size and K (-) kernel smoothing function. The KDE can be described as:

700 :%Zf((x;x*); D<x<ow (1)
i=1

where (%) is a prediction function of KDE with time series input x. For the proposed application,
KDE will be immune to the data loss because of discretization. KDE will provide smooth and
continuous probability curve of the sample data. Furthermore, when there are several uncertainties
later involve in the system, KDE can have different individual distribution for each component of
uncertainties, summing their smooth curves and provide one single continuous probability density
function. From (Greco and Pagnotta, 2009), skewness of probability distribution function (1) relates to
standard normal density ¢ and distribution function % that can be described as:

glz; ) =2p(z2)®(Az); A€IR (2)

Thus, equation (1) will be modified as:
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The calculation of the real confidence interval of uncertainty will be done by the following approach.
1. Find the minimal error of actual interval by differentiating the actual and forecast temperature
per hour. The minimal error will be placed when the forecast and actual temperature curve is
intersected)
P=F (4
2. The probability of actual condition will follow KDE mentioned in Eq. (1), and joint
probability will be calculated as:
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3. Adopted from the way adaptive threshold in image processing (Gonzales & Woods, 2002),
The confidence interval will be as follows:
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This probability distribution function will be used in day ahead forecasting on photovoltaic
Alternating Current (AC) power production. Meanwhile the available forecast data usually only
consist of 1 point for 1 day and 7 points for next 7 days, Back Propagation Neural Network (NN) is
used to determine the prediction accuracy of uncertainty of PV output. There are three inputs in the
training process which are forecast temperature, actual site’s temperature and past day PV output.
Forecast temperature are scraped from Central Weather Bureau of Taiwan (CWB). The CWB data is
usually 7 days ahead prediction in a form of prediction range (following normal distribution with a
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confidence level). Data of actual site’s temperature and PV output are gathered from PV plant in
Kaohsiung. This location is selected because it matched with the latitude and longitude of CWB’s
weather station. The actual temperature data will be 24 point hourly online data and so does the PV
output. The difference is in PV output data, historical data of past day is used. These three inputs will
be feed to NN and predict the probability distribution of PV output. By this process, the confidence
level of next day and 7 days can be accurately predicted. From (Chen et al, 2017) mentioned in
equation (10) and (11), Mean Absolute Percentage Error (MAPE) and Unscaled Mean Bounded
Relative Error (UMBRAE) will be used to calculate prediction error. The proposed strategy is shown
in Figure 1.
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Where the Mean Bounded Relative Error (MBRAE) is
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Figure 1. Proposed Strategy for Day Ahead PV Output Forecasting

3. Result and discussion

The proposed method is evaluated for period between October 31%, 2016 to November 2™, 2016. The
input data will be from the historical data of PV plant in Kaohsiung and weather data from Central
Weather Bureau of Taiwan at the same period. The 7-day ahead prediction will also use to be
compared with the historical data and further used to know the real confidence error. Mismatch
between actual and forecast value will be used to find confidence interval.
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Figure 2. Actual & Forecast Temperature Mismatch on November 1%, 2016
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To see the probability distribution within the day, the real value of the mismatch is extracted to
Kernel’s PDF as shown in Figure 2. From this figure, the forecast temperature is following normal
distribution which much differ to actual temperature. To ensure whether the data is following normal
distribution or not, the data is plot in the Quantile-Quantile Plot (QQ-plot). The red line shown is the
reference of normality. The blue dots following the normality means that the data is closer to normal
distribution. In Figure 3, the forecast data is more likely closer to the red line in comparison to actual
temperature. To get accurate prediction, the actual probability distribution is used as reference point
to calculate real confidence interval.
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”Figure 3. Probability Distribﬁtion Functioﬁ of Actual & Forecast Temperature (Upper and Lower)

To conduct the analysis, the forecast value that available in CWB is usually in the form of points. It is
only provided as the lowest and highest prediction of the day following normal distribution. To see
how differ the probability of actual and forecast value. these two points are plotted in Figure 4
following the actual probability distribution of previous day. It is shown that there is a mismatch in the
temperature’s lower and upper bound. Thus, this temperature mismatch will be used to calculate the
skewness of the PDF. The PV’s output is shown in the Figure 4 (Right).

31



SPECTA Journal of Technology, Vol. 2, No. 1, March — April 2018
ISSN : 2549-2713

o Probability Distribution Function of Temperature Actual PV output
250
01 .FJI: —&— PDF of Forecast Temperature
£ 200
41
aoe [ !
2 o
2 008 \-;_i e
% Atemperatu%f —1 5
2 007
g Atemperature — 2 g
D —
0.06 e, |
o N\ 50
0.05 & 4
g’ |
' _;?‘,
0.04 € 0 “ >
2 2 8 0 a2 34 3 38 0 5 10 15 20 25
temperature (C) hour
Figure 4. Forecast Temperature in Kernel's Distribution Estimator (Left) and PV's output on November
Ist, 2016 (Right)

To forecast PV’s output, Back Propagation Neural Network model is used with two inputs which is
forecast temperature and Actual PV output respectively. The data of forecast temperature are from
CWB?’s site measurement while the data of actual PV’s temperature are from the PV’s site. The hidden
layer is set as 5 layers and Levenberg-Marquardt optimization is used as a network training function to
update the weight and bias values of the model. the performance of NN training is evaluated by Mean
Squared Error (MSE) with random data division. After 10 iterations and 6 times validation checks, the
results from MAPE prediction are shown in Figure 5. In Figure 5 (right), it can be observed that
MAPE of 24-hour forecast is 21.74% with the highest error happened in hour-8 by the prediction’s
mismatch of 49.23 kW when the real output shows 51 kW. The observation needs to be done carefully
because the even though the gap between prediction curve and real output looks wide, if the original
output have relatively small value, the error will increase drastically in comparison to high value
original output. The simulation in Figure 5 (left) used the historical data to forecast. This simulation
will be used as reference that will be compared with the NN’s result when probability distribution is
used.
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Figure 5. MAPE of PV's Real Output and BPNN'’s Prediction (left) and MAPE Distribution (Right)

For observing how significance the selection of appropriate PDF to the forecasting output, the NN
model is trained and tested with temperature model of two different probability distributions which are
normal distribution and Kernel’s Density Estimator shown in Figure 6. Both PDF are normalized into
[0,1] to have even comparison. Both PDF are extracted from the actual past day historical data which

has 24°C and 36°C as the lowest and highest temperature of the past day. The mean of temperature

of normal distribution is 30.25°C whose probability score is 1. The higher the probability score
means that the temperature have higher possibility to be happened. While in the KDE, there are two
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peaks whose highest probability score are 29°C and 32°C. The range of this PDF will be modified as
the next day temperature prediction.
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Figure 6. Probability Function for Next Day Prediction

Prediction error is evaluated by MAPE and UMBRAE calculation. In Figure 7, the comparison of
forecast result between the usage of KDE and normal distribution as probability distribution is
presented. By modelling the temperature with normal distribution, the MAPE reach 46.28% with the
highest error is located at hour-8. In contrasts, error of KDE probability distribution at the same point
was only 25% which is approximately only 10.63% of MAPE error at hour-8 following normal
distribution. By using KDE probability distribution, the MAPE can be suppressed to 21.41% which is
53.74% error reduction. When doing the simulation, authors find that the MAPE error somehow
elevated the error calculation when the actual value has very small value near to zero. Thus,
UMBRAE will also be used to prove the evaluation.
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Figure 7. Prediction Comparison between Kernel's PDF and Normal's PDF (left) and Error
Comparison using MAPE (right)

In Figure 8, UMBRAE is employed to evaluate the performance of forecast method. The MBRAE of
each hour are plotted and later used equation (11) to calculate the unscaled performance of MBRAE.
For the following point, errors are bounded into [0,1]. When the MBRAE=1, it means that the actual

value is nearly zero while when the MBRAE = 0, the mismatch of the prediction and the actual value
is nearly zero which is very accurate. In Figure 8, prediction error that using normal distribution shows
2.64% UMBRAE with the highest error is at point hour-8. Meanwhile, by using KDE, prediction error
can be reduced to 2.06% which is 21.97% reduction in UMBRAE Error.
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Figure 8. Error Comparison using UMBRAE

4. Conclusion

Several conclusions can be made from the discussion of simulation and result. Firstly, by proposed
strategy, the importance of long historical data can be withdrawn by using only previous day to extract
its probability distribution function. This will benefit the field’s implementation of PV output
prediction when the long historical data are not available. Secondly, the accuracy of the forecast is
determined by its input. It is necessary to observe not only the pattern of the input data but also its
range thus active modification of its probability distribution is needed. The proposed method can
adjust the mismatch between the actual measurement and prediction that reduced the prediction error
significantly. In the future, proposed strategy will be directly integrated to prediction tool’s model
structure to further reduce its error prediction.
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