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Abstract 

 
Optimal controls have been applied in this time. One of simple optimal control which will be analyzed in this 

research is planar arm model dynamic. The planar arm model dynamic consists of joint angles consisting of 
shoulder joint and elbow joint, angle velocities, and joint torquest due to passive muscle forces. There are  control 

inputs from six muscles in the system. In this research, from planar arm model, it will be designed optimal control 

using Linear Quadratic Tracking (LQT). The objective function of planar arm model is we will minimimize two 

angles consisting of shoulder joint and elbow joint. In LQT, the value of performance index depends on the weight 

matrices so that we should optimize the weight matrices. In this research, the optimization of weight matrices in 

planar arm model will be applied by Simulated Annealing. The Simulated Annealing method is based on the 

simulation of thermal annealing of critically heated solids. Based on simulation results, Simulated Annealing can 

optimize the weight matrices in LQT so that it results optimal performance index with angle as state solution can 

follow the reference and we also obtain optimal controls from six muscle forces applied. 
 

Keywords: linear quadratic tracking, optimal control, planar arm model, simulated annealing. 

 

 
Abstrak 

 
Kontrol optimal telah banyak diaplikasikan pada saat ini. Salah satu dari kontrol optimal sederhana yang akan 

dianalisis dalam penelitian ini adalah model lengan pada bidang dua dimensi. Model lengan pada bidang dua 

dimensi terdiri dari sudut persendian yang terdiri dari persendian pada bahu dan siku, kecepatan sudut, dan torsi 

sendi pada gaya otot. Terdapat input kontrol dari enam otot pada sistem. Pada penelitian ini, akan dikonstruksi 

kontrol optimal menggunakan Linear Quadratic Tracking (LQT). Fungsi obyektif dari model ini adalah 

meminimumkan dua sudut persendian yang terdiri dari persendian pada bahu dan siku. Pada LQT, nilai dari 

performance index tergantung pada matriks bobot sehingga diperlukan optimisasi. Pada penelitian ini,optimisasi 

matriks bobot pada model lengan akan diaplikasikan menggunakan Simulated Annealing. Metode Simulated 

Annealing berdasarkan pada simulasi dari proses pemanasan dari logam. Berdasarkan hasil simulasi, Simulated 

Annealing dapat mengoptimisasi matriks bobot pada LQT sehingga menghasilkan nilai performance index yang 

optimal dengan sudut persendian dapat mengikuti reference dan hasil kontrol optimal dari enam otot akan 
diperoleh. 

 

Kata Kunci: kontrol optimal, linear quadratic tracking, model lengan dua dimensi, simulated annealing. 
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1. Introduction 

 

Optimal controls have been applied in this time, such as in electronic devices or industrial devices. There 

are two types of control based on their properties i.e. open loop control and close loop control. Open 
loop control computes state solution without feedback while close loop control computes state solution 

with feedback (Ogata, 2002). One of simple optimal control which will be analyzed in this research is 

planar arm model dynamic. 
 

The planar arm model dynamic consists of joint angles consisting of shoulder joint and elbow joint, 

angle velocities, and joint torquest due to passive muscle forces. There are six control inputs in the 

system. They are muscle force vector consisting of pectoralis major, posterior deltoid, brachialis, lateral 
head of triceps brachii, biceps brachii, and longhead of triceps. 

   

In this research, from planar arm model, it will be designed optimal control using Linear Quadratic 

Tracking (LQT). The objective function of planar arm model is minimizing two angles consisting of 
shoulder joint and elbow joint. Moreover, there are six control inputs which will be determined in order 

that output of the system track or follow a desired trajectory that minimizes a performance index. 

 
In LQT, the value of performance index depends on the weight matrices so that we should optimize the 

weight matrices. In previous researches, optimizations of weight matrices have been applied by Ant 

Colony Optimization (ACO) in inverted pendulum (Rahmalia, 2019) and optimal control of disease 
spread (Rahmalia, 2017), Particle Swarm Optimization (PSO) in Autonomous Underwater Vehicle 

(Herlambang, 2019). Besides that, the estimations of state solution have been applied by Kalman Filter 

on mobile robot trajectory (Herlambang, 2017), steam drum boiler system (Herlambang, 2018).  In this 

research, the optimization of weight matrices in planar arm model will be applied by other method such 
as Simulated Annealing. 

 

The Simulated Annealing method is based on the simulation of thermal annealing of critically heated 
solids. When a solid or metal is brought into a molten state by heating it to a high temperature, the atoms 

in the molten metal move freely with respect to each other. However, the movements of atoms get 

restricted as the temperature is reduced (Kirkpatrick, 1983). 
 

Based on simulation results, we can conclude that Simulated Annealing can optimize the weight 

matrices in LQT so that it results optimal performance index with angle as state solution can follow the 

reference and we also obtain optimal controls from six muscle forces applied. 

 

2. Methods 
 

2.1. State Space of Planar Arm Model 

The planar arm model dynamic can be seen in Figure 1.  
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Figure 1: Planar Arm Model Dynamic 

Source:  Zasravec and Matjacic, 2013 
 

The planar arm model dynamic consists of joint angles consisting of shoulder joint and elbow joint 
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 which is given in Equation (1). 

 

( ) ( , ) muscleM C B          (1) 

 

With M  is manipulator inertia value, C  is coriolis and centrifugal matrix and B  is viscosity matrix 

which can be expanded as follows (Zadravec, 2013): 
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 (2) 

 
There are six control inputs in the system which can be formed as follows: 
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(3) 

 

With TW  is the moment lever matrix and 
1 2 3 4 5 6, , , , ,U U U U U U   are muscle force vector consisting of 

pectoralis major, posterior deltoid, brachialis, lateral head of triceps brachii, biceps brachii, and 
longhead of triceps. 
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, then the system in (2) becomes : 

11

22

1 2 51 612 2 2 2 11 1 2 2 12 11

32 1 2 21 22 22

0 0 0 0 0 01 0 0 0 0 0 1 0

0 0 0 0 0 00 1 0 0 0 0 0 1

0 00 0 2 cos cos 0 0 sin ( )sin

0 00 0 cos 0 0 sin

a a a ab b

a ab b





            

      

      
      
       
            
      

          

1

2

3

4

4 52 62 5

6

U

U

U

U

a a U

U

 
 

   
   
   
   
    

 
  

 

Where state matrix and vector are: 
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Input control matrix and vector are: 
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because we will minimimize two angles then output matrix and vector are : 
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Because the system is nonlinear, we need to linearize state in (4) and input control in (5) using Jacobian 

matrix in Equation (7) and (8) respectively. 
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2.2. Linear Quadratic Tracking (LQT) 
The basic of Linear Quadratic Tracking (LQT)  is output of the system track or follow a desired 

trajectory r  that minimizes a performance index J . LQT can be solved in either continuous time or 

discrete time.  

 

LQT in continuous time can be constructed as follows : 
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with 0P   and 0Q  are symmetric and positive semidefinite, also 0R  is symmeteric and positive 

definite. 

  
The algorithm and computation of LQT in continuous time is as follows (Lewis, 2012): 
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The model of LQT in continous time also can be discretized by LQT in discrete time. The model of 
LQT in discrete time is defined as follows :  

State equation ( )x t  and output ( )y t in discrete time can be constructed in (12) and (13) respectively. 
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Error weighted matrices 0P   and 0Q   must be symmetric and positive semidefinite matrices, and 

control weighted matrix 0R   must be symmetric and positive definite matrix. 
 

The algorithm and computation of LQT in discrete time is as follows (Naidu, 2003) : 
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4. Compute Performance Index J  as objective function 
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2.3. Simulated Annealing  

 
2.3.1. The behavior of simulated annealing 

Simulated Annealing was discovered by Kirkpatrick in 1983. The Simulated Annealing method is based 

on the simulation of thermal annealing of critically heated solids. When a solid or metal is brought into 

a molten state by heating it to a high temperature, the atoms in the molten metal move freely with respect 
to each other. However, the movements of atoms get restricted as the temperature is reduced. 

 

As the temperature reduces, the atoms tend to get ordered and finally form crystals having the minimum 
possible internal energy. The process of formation of crystals essentially depends on the cooling rate. 

 

2.3.2. Simulated annealing on Linear Quadratic Tracking (LQT) 
In LQT, the value of performance index is affected by weight matrices (Hassani, 2014 and Karthick, 

2016). Generally, the elements of weight matrices are determined by trial and error so that in this 

research Simulated Annealing will be used for optimization. There are three weight matrices which will 

be optimized by Simulated Annealing such as : 0P  , 0Q  and 0R  .  

 

By assuming 0P  , 

11

22

0 0 0

0 0 0

0 0 0 0

0 0 0 0

q

q
Q

 
 
 
 
 
 

, 

11

22

33

44

55

66

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

r

r

r
R

r

r

r

 
 
 
 

  
 
 
 
  

 because we will 
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 and there are six control inputs 
1 2 3 4 5 6, , , , ,U U U U U U , then the decision 

variable used in Simulated Annealing is:  

 

 11 12 11 22 33 44 55 66X q q r r r r r r  (22) 

 
with fitness value is performance index as objective function in Equation (21). 

The algorithm of Simulated Annealing can be constructed as follow (Rao, 2009): 
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     For 1: maxk k . 

1. Set current point ( )k

iX t  and current ( ( ))k

if X t  

2. Generate new  point Y  in the vicinity of X  

 

i ilb X v  ,   1,2,... dimi n  (23) 

i iub X v  ,  1,2,... dimi n  (24) 

(0,1)( )i i i iY lb U ub lb   ,    1,2,... dimi n  (25) 

 

3. Compute ( ) ( ( ))k

i if f Y f X t    

4. If 0f   

- Update current point with new point 1( )k

i iX t Y   

else 
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- Generate random variable ~ (0,1)r U  

- Compute /( ) f BT

iP Y e with Bolzmann constant 1B   

if ( )ir P Y  

Update current point with new point 1( )k

i iX t Y   

else 

Set 1( ) ( )k k

i iX t X t   

end 

 end 
end 

Reduce temperature T cT ,  0 1c   

end 

 

3. Result and discussion 
 

The parameters used in planar arm model can be seen in Table 1 (Zadravec, 2013). 

The parameters of moment lever matrix (in meter) used are (Zadravec, 2013): 

 

1 2 3 4 51 52 61 620.055 0.045 0.055 0.045 0.055 0.045a a a a a a a a         

 

Three types simulations will be applied : LQT without tracking, LQT with constant tracking, and LQT 
with nonlinear tracking. 

 

Table 1: Parameters of planar arm model 

Parameters Notation Value 

Length of shoulder joint (m) 

Length of elbow joint (m) 
1L  

2L  

0.298 

0.419 

Mass of shoulder joint (kg) 

Mass of elbow joint (kg) 
1m  

2m  

2.089 

1.912 

Center of mass of shoulder joint (m) 

Center of mass of elbow joint (m) 
1gL  

2gL  

0.152 

0.181 

Moment of inertia of shoulder joint (kg m2) 

Moment of inertia of elbow joint (kg m2) 
1I  

2I  

0.0159 

0.0257 

Source:  Zasravec and Matjacic, 2013 
 

3.1. Linear Quadratic Tracking without Tracking 

Optimization of Simulated Annealing Process in LQT without tracking can be seen in Figure 2. In early 

iteration, the weight matrices as decision variable is still chosen randomly so that they produce large 

performance index as fitness value. When the temperature is reduced slowly, from Simulated Annealing 
results optimal weight matrices with value : 

 

11 221.0577 1.2442q q   

11 22 33 44 55 660.1259 0.0051 0.0393 0.3044 0.0236 0.0002r r r r r r       

 

And the performance index as fitness value is 1.0448.  
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Figure 2: Optimization of Simulated Annealing Process in LQT without Tracking 

 

When the optimal weight matrices are used in LQT simulation, the results can be seen in Figure 3 and 
Figure 4. Reference functions applied are : 

1( ) 0ref    

2( ) 0ref    

Figure 3(a) is state solution of LQT without tracking in 
1  (angle of shoulder joint). Figure 3(b) is state 

solution of LQT without tracking in 
2  (angle of elbow joint). Both angle of shoulder joint and elbow 

joint can follow the reference function. 

 

 
(a) 

 
(b) 

Figure 3: State solutions of LQT without Tracking (a) Angle 1 (b) Angle 2 

 
 

Figure 4 shows the results of six optimal controls from six muscle force vectors (in Newton) such as 

pectoralis major 
1U , posterior deltoid 

2U , brachialis 
3U , triceps brachii (lateral head) 

4U , biceps 

brachii 
5U , and triceps (longhead) 

6U . 
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Figure 4: Six Optimal Controls from Six Muscle Force Vectors  

 

 

3.2. Linear Quadratic Tracking with Constant Tracking 
Optimization of Simulated Annealing Process in LQT with constant tracking can be seen in Figure 5. In 

early iteration, the weight matrices as decision variable is still chosen randomly so that they produce 

large performance index as fitness value. When the temperature is reduced slowly, from Simulated 
Annealing results optimal weight matrices with value : 

 

11 221.6626 1.5187q q   

11 22 33 44 55 660.0506 0.3383 0.0360 0.1535 0.1741 0.0003r r r r r r       

 

And the performance index as fitness value is 36.8466. 

 

 
Figure 5: Optimization of Simulated Annealing Process in LQT with Constant Tracking 

 
When the optimal weight matrices are used in LQT simulation, the results can be seen in Figure 6 and 

Figure 7. Reference functions applied are : 

1( ) 2ref    

2( ) 1.5ref    

Figure 6(a) is state solution of LQT with constant tracking in 
1  (angle of shoulder joint). Figure 6(b) is 

state solution of LQT with constant tracking in 
2  (angle of elbow joint). Both angle of shoulder joint 

and elbow joint can follow the reference function. 
 



 SPECTA Journal of Technology Vol 4 No 3, November-December, 2020  

   

 

 32 Submitted May 2020, Revised September 2020, Accepted October 2020, Published December 2020 
 
 

 
(a) 

 
(b) 

Figure 6: State Solutions of LQT with Constant Tracking (a) Angle 1 (b) Angle 2 
 

 

Figure 7 shows the results of six optimal controls from six muscle force vectors (in Newton) such as 

pectoralis major 
1U , posterior deltoid 

2U , brachialis 
3U , triceps brachii (lateral head) 

4U , biceps 

brachii 
5U , and triceps (longhead) 

6U . 

In about around of final time, there are deviations on the optimal controls and state solutions because 
there are no optimization process of weight matrix P in the performance index and weight matrix P is 

assumed by 0. 

 

 

 
Figure 7: Six Optimal Controls from Six Muscle Force Vectors  

 

3.3. Linear Quadratic Tracking with Nonlinear Tracking 

Optimization of Simulated Annealing Process in LQT with nonlinear tracking can be seen in Figure 8. 
In early iteration, the weight matrices as decision variable is still chosen randomly so that they produce 

large performance index as fitness value. When the temperature is reduced slowly, from Simulated 

Annealing results optimal weight matrices with value : 

 

11 221.0282 1.4139q q   

11 22 33 44 55 660.2710 0.3123 0.0002 0.0546 0.0818 0.0048r r r r r r       

 

And the performance index as fitness value is 11.1586. 
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Figure 8: Optimization of Simulated Annealing process in LQT with Nonlinear Tracking 

 

When the optimal weight matrices are used in LQT simulation, the results can be seen in Figure 9 and 

Figure 10. Reference functions applied are: 

1( ) sin( )ref t   

2( ) cos( )ref t   

Figure 9(a) is state solution of LQT with nonlinear (sinus) tracking in 
1  (angle of shoulder joint). Figure 

9(b) is state solution of LQT with nonlinear (cosinus) tracking in 
2  (angle of elbow joint). Both angle 

of shoulder joint and elbow joint can follow the reference function. 
 

 
(a) 

 
(b) 

Figure 9: State Solutions of LQT with Nonlinear Tracking (a) Angle 1 (b) Angle 2 
 

 

Figure 10 shows the results of six optimal controls from six muscle force vectors (in Newton) such as 

pectoralis major 
1U , posterior deltoid 

2U , brachialis 
3U , triceps brachii (lateral head) 

4U , biceps 

brachii 
5U , and triceps (longhead) 

6U . 

 

In about around of final time, there are deviations on the optimal controls and state solutions because 

there are no optimization process of weight matrix P in the performance index and weight matrix P is 
assumed by 0. 
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Figure 10: Six Optimal Controls from Six Muscle Force Vectors  

 

 

4. Conclusion 
 
In LQT, the value of performance index depends on the weight matrices so that we should optimize the 

weight matrices. Based on simulation results, Simulated Annealing can optimize the weight matrices in 

LQT so that it yields optimal performance index with angle as state solution following the reference and 

we also obtain optimal controls from six muscle forces applied. 
 

The developments of this research are making translation movement such as position, velocity in state 

space model.  
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