

Design and Performance Assessment of a Stove Fueled by Waste Cooking Oil based on FFEAS Technology using the French Method

Rizal Justian Setiawan^{1*}, Khakam Ma'ruf², Darmono³, Nur Evirda Khosyati⁴, Nur Azizah⁵

¹Industrial Engineering and Management, College of Engineering, Yuan Ze University, Republic of China

²Mechanical Engineering Education, Faculty of Engineering, Yogyakarta State University, Indonesia

³Civil Engineering Education, Faculty of Engineering, Yogyakarta State University, Indonesia

⁴Culinary Technology Education, Faculty of Engineering, Yogyakarta State University, Indonesia

⁵International Public Health, College of Public Health, China Medical University, Republic of China

*Corresponding email: rizaljustiansetiawan99@gmail.com

Received: 29/August/2023

Accepted: 08/September/2023

Revised: 31/August/2023

Published: 31/December/2025

To cite this article:

Setiawan, R. J., Ma'Ruf, K., Darmono., Khosyati, N. E & Azizah, N (2025). *Design and Performance Assessment of a Stove Fueled by Waste Cooking Oil based on FFEAS Technology using the French Method*. *SPECTA Journal of Technology*, 9(3), 209-218.

[10.35718/specta.v9i3.1072](https://doi.org/10.35718/specta.v9i3.1072)

Abstract

Waste cooking oil or used cooking oil is potentially carcinogenic waste and dangerous to human health if used for cooking repeatedly. If waste cooking oil is disposed of in the environment, it can harm soil structure by impeding water movement in soil pores. Therefore, the development of waste cooking oil stove technology designed using the French method can be a solution to utilize waste cooking oil as an alternative fuel. The results of this research are a stove design and device that can use used cooking oil. This stove uses abundant waste cooking oil with efficient and clean combustion results through the use of FFEAS Technology. This stove uses a floating wick and an excess air system which makes the combustion process easier. The performance of the stove being developed can be seen in several tests such as ignition combustion duration, required pressure, operational time, fuel consumption rate, sensible heat, and latent heat. The results of three tests that have been conducted show that the average ignition duration of the stove is 12 minutes, the optimal pressure is 4-5 bar, the fuel consumption rate is 8.34ml/minute, the average latent heat is 1,095.82 watts, and the average sensible heat is 132.48 watts.

Keywords: Combustion, FFEAS, French method, Stove, Waste cooking oil

Abstrak

Minyak goreng bekas atau minyak jelantah adalah limbah karsinogenik dan berbahaya bagi kesehatan manusia jika digunakan untuk memasak berulang kali. Jika dibuang ke lingkungan, dapat merusak struktur tanah karena menghambat pergerakan air pada pori-pori tanah. Oleh karena itu, melalui pengembangan teknologi kompor minyak jelantah yang didesain menggunakan metode French dapat menjadi solusi untuk memanfaatkan minyak jelantah sebagai bahan bakar alternatif. Hasil dari penelitian ini adalah desain dan device kompor yang dapat menggunakan bakar minyak jelantah. Kompor ini menggunakan minyak jelantah yang melimpah dengan hasil pembakaran yang efisien dan bersih melalui penggunaan Teknologi FFEAS. Kompor ini menggunakan sumbu apung dan sistem udara berlebih yang memudahkan proses pembakaran. Performa kompor yang dikembangkan dapat dilihat pada beberapa pengujian seperti lama penyalakan, tekanan yang dibutuhkan, waktu operasional, laju konsumsi bahan bakar, panas sensible, dan panas laten. Hasil dari tiga kali pengujian yang dilakukan menunjukkan rata-rata lama penyalakan dari kompor adalah 12 menit, tekanan optimal 4-5 bar, laju konsumsi bahan bakar 8.34ml/menit, rata-rata panas laten 1,095.82 watt, dan rata-rata panas sensible 132.48 watt.

Kata Kunci: FFEAS, Kompor, Metode French, Minyak Jelantah, Pembakaran.

1. Introduction

Waste cooking oil is waste that can come from corn oil, vegetable oil, and ghee which is carcinogenic, acidic, and high in peroxide (Erviana, Suwartini, & Mudayana, 2018). This oil is used oil for household needs and is used repeatedly up to 3-4 times (Kapitan, 2013). As the consumption of cooking oil in households increases, the prices of genuine cooking oil continue to rise. This is causing people to opt for reusing waste cooking oil, which has become a popular choice among both households and small entrepreneurs to keep their businesses running (Kusumaningtyas, et. al., 2019). A lot of people improperly dispose of waste cooking oil by throwing it in the trash or the environment, rather than recycling it (Vanessa & Bauta, 2017).

Judging from its chemical composition, used cooking oil is waste (Ervina, 2018). Currently, the level of public knowledge regarding the dangers of disposing of used cooking oil into the environment is still low (Gultom, et al., 2022), because this type of formulation is not soluble in water and can pollute the environment. Careless disposal into the environment results in soil and water pollution (Rumaisa, 2019; Kusumaningtyas, et al., 2018). Used cooking oil is a place for aflatoxin fungi to grow and reproduce (Viera, et al., 2020). This fungus produces aflatoxin poison which can cause various diseases, especially the liver. On the one hand, waste cooking oil that is used repeatedly up to 3-4 times contains very high levels of free fatty acids and can cause desquamation of the small intestinal villi and the formation of free radicals (Ayu, 2015). Apart from that, used cooking oil has the potential to cause hypertension, stroke, and coronary heart disease (Azizah, 2014). Even though the waste cooking oil obtained has been filtered several times, this process does not remove substances that arise after cooking oil is heated repeatedly at high temperatures (Grasi et al., 2021).

Currently, there is a large amount of waste cooking oil in society. This can be seen from the production of waste cooking oil in Indonesia reaching 4,000,000 tons/year (Department of Statistical Research, 2020). Of course, with this amount, waste cooking oil poses a potential hazard for health and the environment, so efforts are needed to utilize waste cooking oil which has economic value for the community (Afrozi, 2017). If left unchecked, it is feared that the dangers both in terms of the environment and public health will have far-reaching impacts.

Waste cooking oil requires good handling to avoid environmental pollution (Rahkadima & Purwati, 2011; Qory et al., 2021). There is a solution to deal with this problem, namely by using waste cooking oil as an alternative fuel amidst the current energy shortage. Based on its chemical structure, waste cooking oil has a hydrocarbon composition with a long carbon chain so it has the potential to be used as an alternative fuel. Therefore, this waste cooking oil stove innovation is here as an alternative solution for utilizing energy sources that can be renewed and are affordable for the community. This stove technology fueled by waste cooking oil can be the right solution amidst the scarcity of conventional fuel.

2. Methods

2.1 Literature Review

The type of research in this study is a literature review. A literature review is a study that critically evaluates information, concepts, or findings in academic literature and develops theoretical and methodological contributions to specific issues (Snyder, 2019). This research method is descriptive analysis, which requires breaking down routinely collected data before providing a reasonable understanding and justification to the reader. This was done to explore the use of FFEAS technology in waste or used cooking oil-fueled stoves, which is an environmentally friendly and economical alternative for MSMEs in Indonesia. The writing flow is summarized in the scheme in Figure 1.

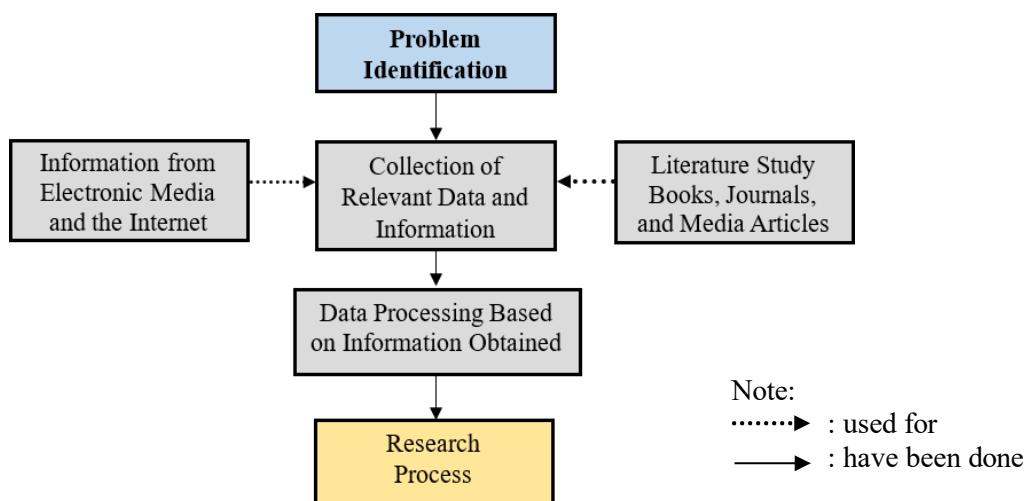


Figure 1: Research Method Flow Scheme

2.2 Synthesis and Analysis

To support the theory from the literature review, synthesis, and analysis of the work were conducted. Synthesis and analysis are conducted by designing and making work prototypes and carrying out prototype trials. Tests were conducted to prove whether the theory based on the written literature review could work well. Then, from the test results, an analysis was conducted based on related theories to support that the work created was worthy of being an environmentally friendly and economical innovation technology that needed to be developed. This research was done with a case study of the use of FFEAS technology on waste cooking oil-fueled stoves as an environmentally friendly and economical alternative for MSMEs in Indonesia.

2.3 French Method

For this particular research in the field of mechanical engineering product design, the French Method was chosen. The French method is preferred due to it divides the design process into clear and structured stages. These stages include identifying needs, searching for concepts, selecting concepts, designing forms, and designing details. By breaking down the design process into these stages, designers can work on each stage systematically. This method makes it easier for designers to create mechanical engineering products by considering market needs and technical aspects. The French Method provides a structured and systematic framework for designing mechanical engineering products.

The French design method considers design as a comprehensive process that involves conception, discovery, visualization, calculation, preparation, refinement, and detailed specifications to determine the engineering form. This method follows a design process flow diagram represented in blocks, as shown in Figure 2. The circles in the diagram indicate the stages already achieved, and the rectangles represent ongoing activities. Hence, the French method divides the design process into several distinct stages that are systematically sequenced and clearly defined.

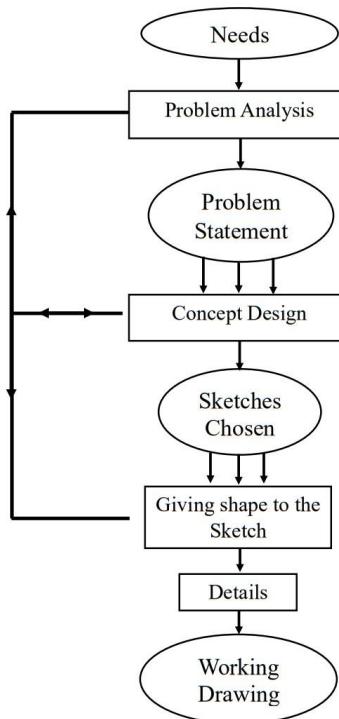


Figure 2: Block Diagram of French Method

Source: M. J French (1985)

a. Analysis of Problem

This stage consists of identifying the desired needs by finding and defining the problem. There are 3 elements of a problem statement, namely the design problem, specification limits, and expected optimal solution criteria.

b. Conceptual Design

This stage consists of formulating the problem and generating a broad solution in the form of a scheme with scope for further development. The device's design is informed by data collected during field observations. In the explanation section of the product design, research is conducted to determine which design is most appropriate for this project. This is achieved by referring to similar research and field observations, which helps to establish device specifications (Saparudin et al., 2021).

c. Embodiment of Schemes

This section is an embodiment of the scheme into a more concrete design. This stage consists of several alternative schemes which are worked out in detail in the form of conceptual designs.

d. Detailing

This final stage in the design system requires a good-quality design with the help of computer software to minimize errors. There are 3 main problems in the design, namely creating a good scheme, selecting the best solution in realizing the design, and evaluating design alternatives. SolidWorks application was used to create the hardware design, due to this software can create detailed working drawings and renderings (Setiawan & Chen, 2023).

2.4 Sensible Heat and Latent Heat

Sensible heat is the heat required to change the air temperature. Meanwhile, latent heat is heat that affects relative humidity which influences changes in the state of water vapor in the air (Arsana et al., 2021). The amount of sensible heat from the heating/cooling coil and heat exchanger is calculated by equation 1 (K. van Haperen, 2005).

$$Q_s = qv \cdot \rho \cdot cp \cdot (t_{out} - t_{in}) \quad (1)$$

Where :

Q_s = sensible heat
 qv = air flow rate (m^3/s)
 ρ = specific gravity of air (kg/m^3) = 1.2 kg/m^3
 cp = specific heat of air ($kJ/(kg.K)$) = 1.00 $kJ/(kg.K)$
 t_{out} = coil outlet air temperature ($^{\circ}C$)
 t_{in} = coil inlet air temperature ($^{\circ}C$)

All values apply to air density. $\rho_{air} = 1.2 \text{ kg/m}^3$

If the air humidity changes, the amount of instantaneous sensible heat for cooling/heating the air is calculated using equation 2.

$$Q_s = qv \cdot \rho \cdot (h_{in} - h_{out}) \quad (2)$$

Where :

Q_s = sensible heat when air humidity changes
 qv = air flow rate (m^3/s)
 ρ = specific gravity of air (kg/m^3) = 1.2 kg/m^3
 h_{out} = enthalpy of air leaving the coil (kJ/kg)
 h_{in} = enthalpy of air entering the coil (kJ/kg)

Instantaneous latent heat for the heater/cooling coil and heat exchanger (dehumidification or humidification of air in the cooling coil) is calculated using equation 3 (K. van Haperen, 2005):

$$Q_l = qv \cdot \rho \cdot (x_{in} - x_{out}) \cdot 2500 \quad (3)$$

Where

Q_l = latent heat
 qv = air flow rate (m^3/s)
 ρ = specific gravity of air (kg/m^3) = 1.2 kg/m^3
 x_{out} = water vapor content of the air leaving the coil ($kg.\text{water vapor}/kg.\text{dry air}$)
 x_{in} = water vapor content of the air entering the coil ($kg.\text{water vapor}/kg.\text{dry air}$)
 2500 = condensation/evaporation of water vapor at moderate coil exit temperatures (kJ/kg)

Calculation of sensible heat and latent heat according to Grondzik (2007) without taking into account condensation or evaporation factors so that the calculation of sensible heat and latent heat follows equations 4 and 5.

$$Q_s = m \cdot \Delta h \quad (4)$$

$$Q_l = m \cdot \Delta x \quad (5)$$

Total heat (Q_t) from the cooling/heating coil is the amount of sensible and latent heat, it can be calculated using equation 6 (K. van Haperen, 2005):

$$Q_t = Q_s + Q_l \quad (6)$$

3. Result and discussion

3.1 Design of a Stove (Burner) Made from Waste Cooking Oil

Waste cooking oil stoves are designed to be eco-friendly cooking stoves that use biomass as fuel. The biomass, in this case, is cooking oil derived from processed CPO that is no longer suitable for use. In addition to being environmentally friendly, these stoves are more economical as they utilize waste

cooking oil that would otherwise be discarded from kitchen burners daily. Below are the design and components of a waste cooking oil stove.

a. Furnace

The stove is designed by applying various theoretical considerations that correlate with the scientific field of Engineering. Figure 3 shows the rendering design of a waste cooking oil stove. Some of the theories used include Bernoulli's principle in fluid flow, Hess's law in combustion, capillarity theory, and other relevant theories. The application of these theoretical considerations is conducted so that stove design can be conducted carefully so that the resulting technology can be applied and commercialized for the wider community. This is important considering that the world's energy needs continue to increase every day, this biofuel stove can be an alternative solution for the future that is environmentally friendly and sustainable.

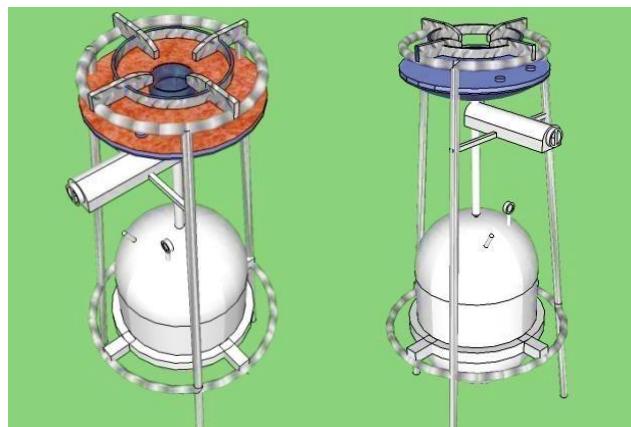
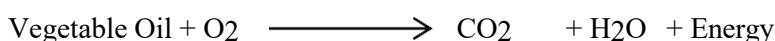



Figure 3: Waste Cooking Oil Stove Design

The stove consists of several important components. Among them are furnaces with FFEAS (Floating Fire Excess Air System) technology which are very environmentally friendly. This technology relies on air as excess water in the combustion process as in general combustion reactions:

Assembling the combustion furnace is conducted using the metal joining method using metal inert gas (MIG) based welding which is usually used in the manufacturing and construction industries (Chen & Setiawan, 2023).

The amount of oxygen injected into the fuel is directly proportional to the amount of fuel that will burn. For instance, if 5 moles of oxygen are injected, then 5 moles of fuel will also be burned. Combustion efficiency will increase with excess air conditions, as more excess air is injected, resulting in more complete combustion. However, it is important to pay attention to the optimum excess air ratio to avoid being excessive. Combustion efficiency will increase up to a certain limit of excess air ratio. The design of the combustion furnace can be seen in Figure 4.

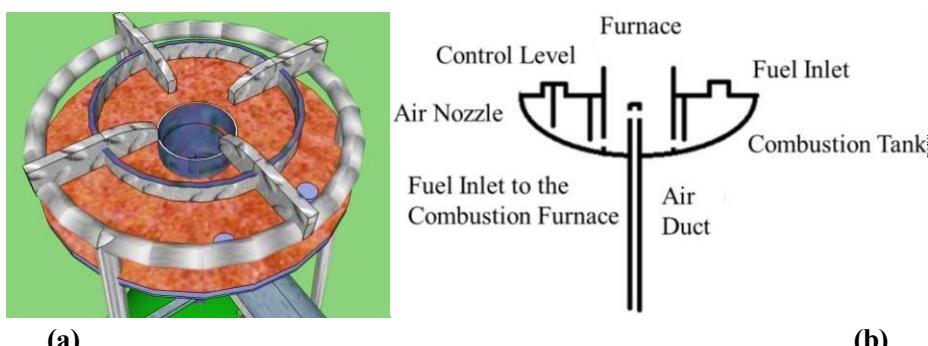


Figure 4: Combustion Furnace Design (a) 3-Dimensional (b) 2-Dimensional

Floating Fire means a burning fire that occurs on the surface of liquid fuel with the help of a burning medium. The burning medium used in this design is cosmetic cotton (cotton ball). Cotton functions as a wick like in a kerosene stove. Considering that waste cooking oil has a higher viscosity than kerosene, the wick media is designed to be on the surface of the fuel and in direct contact with the oil. The combustion furnace is designed with a manual protection system where the liquid fuel in the tank is isolated from the outside air. The goal is to prevent fire from entering the fuel tank. Several other components in the combustion furnace include a level indicator to see the volume of fuel in the tank, an air nozzle for air entry, and a fuel inlet for refilling liquid fuel.

b. Air Valve

To adjust the flame produced by this stove, you can simply adjust the valve opening in the air valve system. The size of the flame can be regulated by adjusting the size of the valve opening. This mechanism allows users to control the heating process according to their specific needs. For instance, if you want to boil water quickly, you can open the air valve wider to produce a larger flame. Conversely, if you want to fry food at medium temperature, you can open the valve with a smaller opening. The air valve system of this stove is designed to adjust the flame size according to the user's requirements. Figure 5 shows the design of the air valve that is used in the development of stove.

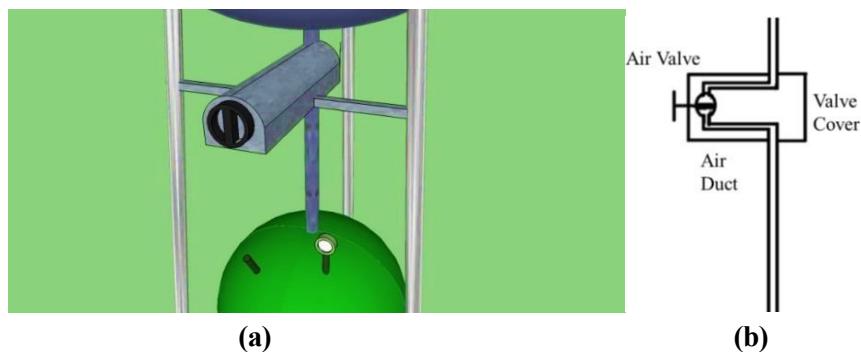


Figure 5: Air Valve (a) 3-Dimensional (b) 2-Dimensional

c. Air Tank

The tube is designed to provide combustion air, and its working principle is similar to a hot air balloon filled with compressed air. It features several components, including an air valve for refilling air. Users can refill the tube with the help of a manual tire pump or compressor at a repair shop. The tube can also be disassembled for easy refill. Additionally, there is a pressure gauge to monitor the pressure in the tube, which indicates the amount of air available. A regulator is also included to stabilize the air pressure, so it remains at the desired working pressure even when the pressure in the tube decreases due to air usage. Overall, this air cylinder is practical, refillable, and ensures a steady supply of combustion air. Figure 6 shows the three-dimensional and two-dimensional design of the water tank that has been designed.

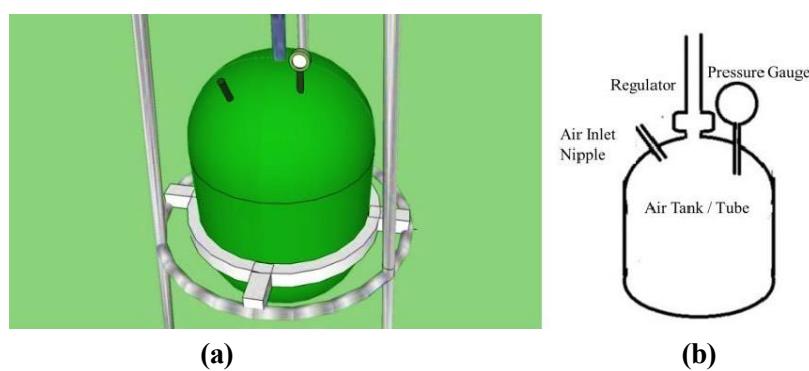


Figure 6: Air Tank (a) 3-Dimensional (b) 2-Dimensional

3.2 Stove Operation

The way to turn on a waste cooking oil stove is different from the way to turn on a stove in general.

There is special treatment so that operations can run optimally. Operation steps include:

- a) Fill fuel (waste cooking oil) in the form of used cooking oil into the fuel tank on the stove.
- b) Arrange the cotton ball as a burning medium into the combustion chamber as effectively as possible so that all parts submerged in oil are evenly covered. It is important to pay attention that the burning medium does not sink too much into the oil because this can make it difficult for the stove to ignite.
- c) Pour the burning fuel in the form of alcohol, and sprinkle it evenly over the surface of the burning medium so that the fire can burn evenly.
- d) Light the fire on the burning medium using a lighter, then wait a few moments until a flame form on the surface of the oil.
- e) After the fire burns evenly across the surface of the burning medium, slowly flow air from the air tube until the fire spreads evenly throughout the combustion chamber.
- f) Perfect combustion is indicated by the blue flame color, adjust the size of the air valve opening to the desired amount of heat.
- g) To extinguish the stove, close the combustion chamber using a metal cover to cut off the oxygen supply so that the fire will extinguish itself.

Figure 7: Trial of Boiling Water Using a Waste Cooking Oil Stove

3.3 Ignition Time Analysis

Performance tests are conducted to evaluate the tool's operational system due to a tool can function properly when it produces the expected output (Setiawan et al., 2021). One of the performance tests conducted is ignition time analysis. In terms of ignition duration, based on three tests with a fuel volume of 100 ml, a stove with 100% waste cooking oil can burn for an average of 12 minutes. Mathematically, this figure shows that the specific fuel consumption for the stove being developed requires around 8.34ml of waste cooking oil per minute for combustion.

Table 1: Testing Stove Ignition on Combustion Time

Test	Composition of Waste Cooking Oil	Ignition Time on Combustion
1	100%	11 Minutes 57 Seconds
2	100%	12 Minutes 12 Seconds
3	100%	12 Minutes 05 Seconds

3.4 Visual and Temperature Observations

In Table 2, the results of temperature observations, latent heat calculations, and sensible heat calculations on the waste cooking oil stove being developed are shown. During three tests, the flames seen when testing all the fuel were blue and burned smoothly. The flame was greatly influenced by the pressure in the fuel tube. If the pressure in the tube was less than 4 bar, the flame would become smaller making it easier to extinguish. During testing, a pressure of 4 to 5 bar would be optimal. When the flame.

becomes smaller and unstable, the stove will emit smoke which is the result of fuel evaporating but failing to undergo the combustion process. Apart from that, the average latent heat produced was 1,095.82 watts and the average sensible heat produced was 135.48 watts.

Table 2: Pipe Wall Temperature and Heat during Gas Exits

Test	Waste Cooking Oil	Temperature (°C)	Latent Heat (w)	Sensible Heat (w)
1	100%	247	915.09	108.88
2	100%	254	1,211.05	155.87
3	100%	250	1,161.31	141.67

4. Conclusion

The stove developed in this research is an environmentally friendly and cost-effective stove that uses waste cooking oil as fuel. This technology can be an alternative solution amidst the scarcity of conventional fuel oil. The stove is designed using the French method which applies optimal FFEAS (Floating Fire Excess Air System) engineering and combustion principles. The average ignition time required for the stove is 12 minutes and the fuel consumption rate is 8.34ml per minute. The optimal pressure required by the stove is 4-5 bar. Meanwhile, if the pressure is less than 4 bar it cannot withstand the pressure of the fuel vapor produced and will cause a very small flame. The average latent heat and sensible heat produced are 1,095.82 watts and 135.48 watts.

References

Afrozi, A. S., Iswadi, D., Nuraeni, N., & Pratiwi, G. I. (2017). Pembuatan Sabun dari Limbah Minyak Jelantah Sawit dan Ekstraksi Daun Serai dengan Metode Semi Pendidikan. *Jurnal Ilmiah Teknik Kimia*, 1(1), 2. <https://doi.org/10.32493/jitk.v1i1.524>.

Arsana, M.E., Wiryanta, I., Wiguna, I., & Gunawan, I. (2021). Pengujian mekanis komposit rice starch – organic clay sebagai bahan alternatif kotak pendingin makanan. *Journal of Applied Mechanical Engineering and Green Technology*, Vol. 2, No. 2., pp. 85-90. <https://dx.doi.org/10.31940/jametech.v2i2.2717>

Ayu, A., Farida, R. dan Saifudin, Z. (2015). Pengaruh penggunaan berulang minyak goreng terhadap peningkatan kadar asam lemak bebas dengan metode alkalimetri, *Cerata Jurnal Ilmu Farmasi*, Vol. 6, No. 6, pp. 1-7.

Azizah U. (2014). Pengetahuan ibu tentang bahaya minyak goreng bekas (jelantah) bagi kesehatan di Dusun Ngendut Utara Desa Pucanganom Kecamatan Kebonsari Kabupaten Madiun. *[Skripsi]*. Ponorogo (ID): Universitas Muhammadiyah Ponorogo.

Erviana. Y.V., Suwartini. I., & Mudayana. A.A. (2018). Pengolahan Limbah Minyak Jelantah dan Kulit Pisang Menjadi Sabun. *Jurnal SOLMA*. Vol. 7(2):144-152. <https://doi.org/10.29405/solma.v7i2.2003>.

Chen, Y.T., & Setiawan, R.J. (2023). Energy Saving Solution for Welding Process: A SME Case Study of Fume Extractor. *IEEE 6th International Conference on Knowledge Innovation and Invention (ICKII)*, pp. 720-255. <https://doi.org/10.1109/ICKII58656.2023.10332684>.

Departemen Riset Statista. (2022). *Volume produksi minyak jelantah di Indonesia tahun 2011 hingga 2020*. Statista.

Gultom, N. B., Khairatunnisa, & Ardat. (2022). Hubungan Pengetahuan dan Sikap dengan Penggunaan Minyak Jelantah pada Penjual Gorengan di Kecamatan Rahuning Kabupaten Asahan. *Jumantik*, 7(1), 86–93. <https://doi.org/10.30829/jumantik.v7i1.11001>.

Grassi, D., Desideri, G., Mai, F., Martella, L., De Feo, M., Soddu, D., ... & Ferri, C. (2021). Cocoa, chocolate, and cardiovascular health. *Frontiers in nutrition*, 8, 93. <https://doi.org/10.3389/fnut.2021.637934>

French, M. J. (1985). *Conceptual design for engineers*. Berlin: Springer Science & Business Media.

Kapitan, B.O. (2013). Analisis Kandungan Asam Lemak Trans (Trans Fat) Dalam Minyak Bekas Penggorengan Jajanan di Pinggir Jalan Kota Kupang, *Jurnal Kimia terapan*. Vol. 1(1):17-31.

Kusumaningtyas, R. D., Qudus, N., Putri, R. D. A., & Kusumawardani, R. (2019). Penerapan teknologi pengolahan limbah minyak goreng bekas menjadi sabun cuci piring untuk pengendalian pencemaran dan pemberdayaan masyarakat. *Jurnal Abdimas*, 22(2), 201-208.

K. Vadoudi and S. Marinhas. (2018). Development of Psychrometric diagram for the energy efficiency of Air Handling Units. The REHVA European HVAC Journal, p. 5.

K. van Haperen. (2005). "Recommendations for calculations of energy consumption for air handling units," ed: EUROVENT.

Qory, D.R.A., Ginting, Z., & Bahri S. (2021). Pemurnian Minyak Jelantah Menggunakan Karbon Aktif Dari Biji Salak (Salacca Zalacca) Sebagai Adsorben Alami Dengan Aktivator H₂SO₄. *Jurnal Teknologi Kimia Unimal*, 10(2), pp. 26-36.

Rahkadima, Y., dan Purwati, P. A. (2011). Pembuatan Biodiesel dari Minyak Jelantah Melalui Proses Transesterifikasi Dengan Menggunakan CaO Sebagai Katalis. *Jurnal Teknik Kimia*, 19(3), 44–53.

Rumaisa, D., Christy, E., & Hermanto, H. (2019). Fungsi Dinas Lingkungan Hidup Surakarta Dalam Pengendalian Pencemaran Sungai (Studi Pada Dinas Lingkungan Hidup Kota Surakarta). *Jurnal Hukum Media Bhakti*, 3(2), 128–141. <https://doi.org/10.32501/lhmb.v3i2.88>

Saparudin, M.A., Setiawan, R.J., Budi, E., Puspito, A., & Fauzi, I. (2021). Design and Manufacture of Bamboo Handicraft Dryer Machine Based on LPG Gas. *Tadulako Science and Technology Journal*, Vol. 2, No. 1, pp. 1-9. <https://doi.org/10.22487/scientech.v2i1.15555>.

Setiawan, R.J., Chen, Y.T., & Suryanto, I.D. (2023). Cost-Effective Fish Storage Device for Artisanal Fishing in Indonesia - Utilization of Solar Cool Box. *IEEE 17th International Conference on Industrial and Information Systems (ICIIS)*, pp. 471-476. <https://doi.org/10.1109/ICIIS58898.2023.10253549>.

Setiawan, R.J., Hidayat, H., Putra, P.B., Laksana, H.K., & Putra, P.I. (2021). Rancang Bangun Horizontal Gas Cutting Machine untuk Pemotongan Pipa. *Nozzle: Journal Mechanical Engineering (NJME)*, vol. 10, no. 2, pp. 34-44, <https://doi.org/10.30591/nozzle.v10i2.2572>.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. *Journal of Business Research*, 104, 333-339. <https://doi.org/10.1016/j.jbusres.2019.07.039>

Vanessa, M. C., & Bouda, J. M. F. (2017). Analisis Jumlah Minyak Jelantah yang dihasilkan Masyarakat di Wilayah JABODETABEK. *Jurnal Politeknik Manufaktur Negeri Bangka Belitung*, (January), 1–21.

Vieira, T. M. F. S., Santos, M. S., Regitano-d'Arce, M. A. B., Rasera, G. B., Oliveira, M. S., Canniatti-Brazaca, S. G., & do Prado-Silva, L. (2020). Cooking oils used in repetitions present high levels of polar compounds and toxicity to *Caenorhabditis elegans*. *Food Research International*, 130, 108895. <https://doi.org/10.1016/j.foodres.2019.108895>.

W. T. Grondzik. (2007). *Air-conditioning system design manual*. Amsterdam: Elsevier.