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Abstract 

 
Battery applications can be found in electric vehicles, renewable energy power plants, and various other portable 

devices. In this final project research, the author utilizes the Quantum Neural Network (QNN) method to estimate 

the State of Charge (SoC) of a lithium-ion battery designed using Python. This research involves the design of a 

prototype SoC estimation system for lithium-ion batteries utilizing the QNN method, real-time SoC data collection, 

and a comparison of SoC estimation performance using QNN with real-time data. The results of real-time testing 

of lithium-ion batteries using ACS712 voltage and current sensors for five cycles show the following voltage 

results: first cycle 10.70 V to 12.68 V, second cycle 10.56 V to 12.66 V, third cycle 10.60 V to 12.69 V, fourth cycle 

10.60 V to 12.00 V, and the fifth cycle 10.41 V to 12.07 V. Meanwhile, the current sensor results for five cycles 

showed a range of 0.1 A to 0.5 A. Each test result per cycle showed a higher increase, although there were small 

fluctuations, and the overall trend line showed the consistency of the voltage sensor's performance without 

significant degradation during repeated tests, indicating good stability of the voltage sensor. Then, methods with 

qubit rotation, linear entanglement, and a Neural Network were tested. SoC prediction results using QNN with 

qubit rotation showed MAPE and RMSE values of 0.14 and 61%, respectively. Furthermore, testing the SoC 

prediction results on QNN with linear entanglement shows MAPE and RMSE values of 0.08 and 29%, respectively. 

While the SoC prediction results. 
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1. Introduction 

 

In today's technological era, batteries are integral to various aspects of daily life, powering electric 

vehicles, renewable energy power plants, mobile phones, laptops, and other portable devices (Siahaan 

et al., 2021). The preference for batteries stems from their reliability as a power source for numerous 

portable technologies. For smart city applications, secondary batteries, known for their rechargeability, 

are particularly in demand (Siahaan et al., 2021). Despite their widespread use, batteries present several 

challenges, including limited power storage capacity, restricted power distribution, and a relatively short 

lifespan (Rahmawan, 2018). These drawbacks are contingent on the type and characteristics of each 

battery. Inefficient battery use, often due to excessive use, is a common issue. Understanding battery 

capacity is crucial for extending battery life, with the State of Charge (SoC) being a pivotal metric 
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indicating available energy (Tyesadha, 2018). SoC, the ratio of remaining energy to the maximum 

energy capacity of the battery, is expressed as a percentage from 0% to 100% (Rahman, 2018). Accurate 

SoC estimation is vital to prevent system damage, overcharging, and overdischarging, which can cause 

permanent damage (Rahman, 2018). This study aims to estimate SoC using the Quantum Neural 

Network method, leveraging advancements in quantum computing and machine learning. 

Monitoring batteries is complex due to the intricate chemical reactions involved. The battery cycle, 

encompassing charging, displays two key measured parameters: current and voltage. These 

measurements integrate the SoC parameters. This research employs Lithium-Ion batteries to compare 

SoC data results using the Quantum Neural Network method with real-time data, aiming to identify the 

superior method for SoC estimation in Lithium-Ion batteries (Chen et al., 2023).  

The application of machine learning algorithms, such as neural networks, has shown promise in SoC 

estimation for Lithium-Ion batteries (Chandran et al., 2021). Feed-forward backpropagation neural 

networks are particularly effective in this context (Aisyah et al., 2020). Similarly, Quantum Neural 

Networks offer a novel approach for more accurate SoC estimation (Ngo et al., 2023). Quantum 

computing methods, including Quantum Neural Networks, have gained attention for their potential in 

various applications, such as battery management (Kulkarni et al., 2021; Kuppusamy et al., 2022). 

Integrating quantum machine learning with battery technology could revolutionize SoC estimation and 

management (Biamonte et al., 2017). Accurate SoC estimation is critical for the optimal performance 

and longevity of batteries. The Quantum Neural Network method, with its advanced computational 

capabilities, holds significant promise for improving SoC estimation accuracy. This research contributes 

to the ongoing development and innovation in battery technology, with implications for smart cities and 

various portable technology applications (Zhang & Ni, 2020; Vidal et al., 2020). 

Moreover, the development of quantum computing and machine learning methods, such as Quantum 

Neural Networks and Quantum Convolutional Neural Networks, has opened new avenues for battery 

research and management (Cong et al., 2019). These advanced methods enhance the precision of SoC 

estimation, thus improving battery performance and lifespan (Ng et al., 2023). Several studies have 

demonstrated the effectiveness of neural network algorithms in SoC estimation. For instance, Aisyah et 

al. (2020) employed feed-forward backpropagation neural networks for Lithium-Ion batteries, showing 

promising results. Similarly, Chandran et al. (2021) utilized machine learning algorithms for electric 

vehicle batteries, achieving high accuracy in SoC estimation. 

Furthermore, the synergy of machine learning and quantum computing offers unprecedented 

opportunities for battery management. Kulkarni et al. (2021) and Kuppusamy et al. (2022) highlighted 

the potential of quantum machine learning in enhancing the accuracy and efficiency of battery 

management systems. This study's focus on the Quantum Neural Network method for SoC estimation 

aims to bridge the gap between theoretical advancements and practical applications in battery 

technology. By comparing real-time data with Quantum Neural Network estimates, this research seeks 

to validate the method's superiority in SoC estimation for Lithium-Ion batteries (Ngo et al., 2023). In 

addition to improving SoC estimation, advancements in quantum computing can enhance other aspects 

of battery technology. For example, Rahman (n.d.) discusses how quantum computing poses new 

challenges and opportunities for cryptographic systems, which could also apply to secure battery 

management systems. Similarly, Tychola et al. (2023) provide an overview of how quantum machine 

learning can be applied to various engineering fields, including energy systems. 

In conclusion, the accurate estimation of SoC is essential for maintaining battery performance and 

extending its lifespan. The Quantum Neural Network method, underpinned by advancements in 

quantum computing and machine learning, offers a promising solution for improving SoC estimation 

accuracy. This research not only contributes to battery technology development but also has broader 

implications for smart cities and portable technology applications (Zhang & Ni, 2020; Vidal et al., 2020). 

 

2. Method 

 

The research methodology is presented in the form of a flowchart as a structured and systematic 

procedural flow. 
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2.1. Research procedure 

At this stage, the methodology in the research will be explained, including problem identification, 

literature study, system design, and system testing. 

 

2.1.1 Literature Studies 

Literature studies are important in the search and study of relevant and reliable sources. The sources 

used come from national and international journals as well as books on the theme of lithium-ion batteries 

and quantum neural networks. 

 

2.1.2 Problem Identification 

The determination of problem identification begins with conducting appropriate battery modeling to 

describe conventional battery actual data to measure state of charge (SOC) parameters, actual data is 

carried out by looking at the results of data collection and data processing to compare the data results 

from the state of charge using the quantum neural network method with measurement data in real time 

To find out the difference and it can also be known which is the superior method to estimate the state of 

charge in lithium ion batteries. The battery is given input from voltage and current based on the 

provisions of the lithium battery specification. 

 

2.1.3 Charge System Design 

The design of the research will be explained in the form of a block diagram that illustrates the steps of 

how this research will be conducted. The hardware design scheme for the estimated state of charge in 

lithium-ion batteries and the input and output processes in the diagram blocks are as follows. 

 

 
Figure 1: Hardware Design Scheme 

This process begins with the battery to the layout scheme of the sensor used. In this case, the sensors 

used are 2 sensors. The former uses voltage sensors and ACS712 to measure current and voltage. Then 

the data obtained from several current and voltage sensors will be processed using the ESP32 

microcontroller. After the data is received by the ESP32, it will get data that is then processed to 

determine the State Of Charge (SOC). 
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The time, current, and voltage obtained from each sensor serve as the variables measured. The 

microprocessor will process the variables obtained from each sensor, then generate a state of charge 

(SoC) as the output of the process. In addition to design, another important component is simulation 

modeling. Simulation modeling aims to model a monitoring system for SoC value calculations. This 

modeling includes the charging and discharging conditions of the battery. The purpose of simulation 

modeling is to provide an initial idea of how the system works before the tool is created. 

 

2.2. Proses Quantum Neural Network 
The Quantum Neural Network process is the stage in processing the estimated state of charge data on 

the battery as follows. 

 

Flow Diagram of the Quantum Neural Network (QNN) 

1. Data Representation: The data used for SoC estimation, such as voltage, current, temperature, 

and battery historical data, is converted into a format that can be processed by QNN. This data is 

then encoded into qubits, the basic unit of information in quantum computing. 

2. Quantum Feature Mapping: This process involves using quantum gates to transform input data 

into higher quantum feature spaces, allowing for capturing more information and correlations that 

may not be visible in classical feature spaces. 

3. QNN Architecture : 

- Quantum Layers: Similar to the layers on classical neural networks, QNNs have quantum 

layers that consist of a series of quantum gates that change the state of qubits. 

- Parameter Optimization: Parameters in quantum gates are optimized during the training 

process to minimize errors between the predicted output and the actual value of the SoC. This is 

done through quantum optimization algorithms, such as Gradient Descent, which are adapted for 

the quantum domain. 

4. Measurement and Post Processing: Train QNN with historical data. This process involves 

iterative iterations to optimize the model's parameters by using appropriate optimization 

algorithms. 

5. Validation and Evaluation: Validate the QNN model by using a separate dataset that is not used 

in training. Metrics such as MAPE and RMSE are used to evaluate model performance. 

Figure 2: Block System Diagram 

Figure 3: Flow Diagram of the QNN Method Process 
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6. Implementation and Monitoring: Once deemed adequate, the QNN model can be implemented 

on the actual battery system to perform SoC estimation. 

 

3. Results and Discussion 

 

In the formation of this Lithium Ion battery, 4 lithium battery cells are used, which use input parameter 

specifications in the form of voltage of 12 V and current of 8.4 Ah, and battery specifications based on 

the table are applied in the measurement of batteries in real time. 

 

Table 1: Lithium Battery Model 
Lithium Cell Information 

Nominal Voltage (V) 12 V 

Rated Capacity (Ah) 8.4 Ah / 8000 mAh 

Fully Charged Voltage (v) 12.50 

Cut-Off Voltage 10.50 

 

 

 

 

 

 

 

 

 

 

 

 

 

The battery model is useful for regulating specific selections and operating conditions used in those 

simulated measurements. Battery cells that have been formed based on these specificities can be used to 

monitor and control the state of charge condition. The characteristics of the minimum current discharge 

are in accordance with the choice of lithium battery, which has a nominal capacity of 8.4 Ah and a 

nominal voltage of 12 V. The following battery models used in the state of charge measurement can be 

seen based on Figure 5. 

The results and discussion explained the results of the research and analysis 

related to the application of the quantum neural network method of lithium batteries and the results of 

real-time lithium battery measurements that have been designed according to expectations, namely, 

being able to get SOC output in lithium batteries. From the implementation of data training that has been 

carried out through the Google Colab software. 

 

 
 

Figure 5: Prototype Design Results 

Figure 5 is a schematic of the entire system that has been designed and used in this study. In general, it 

consists of an SoC monitoring instrument, a 12 V fan as a load, an Imax B6AC dual power as a battery 

charge/discharge system, and a laptop as a data monitoring using (PLX DAQ). And the image above is 

Figure 4: Lithium Battery Model 
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also a monitoring instrument of the system that uses several components, such as ESP 32 as a 

microcontroller, ACS 712 sensor as a current reading indicator, and a voltage sensor as a voltage reading 

indicator. 

 

3.1. State Of Charge  Value Results In Real Time 

After obtaining the voltage and current values from the real-time measurement results on the lithium 

battery, it is possible to validate the SoC relationship and predict the SoC value in real time under the 

condition of the battery charge. The voltage and current values measured in real time are used to predict 

the results of the SoC when the battery is in use. The relationship test was carried out by discharging the 

battery from 12.69 volts to 10.41 volts according to the datasheet with a load of 12 V, and data sampling 

was carried out every 1 minute. The SoC is done to know and ensure that the voltage is measured in 

proportion to the state of charge of the lithium battery. The graph of the state of charge prediction test 

results on lithium batteries for five cycles is shown in the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SoC prediction results on lithium batteries for SoC estimation in real time state that the results of 

the voltage sensor graph image ranging from one cycle to five cycles above on the x-axis, we have an 

SoC value that may represent the measurement point, while the y-axis indicates the sensor voltage value. 

It can be seen that the sensor voltage value tends to increase with the passage of time or measurement 

point. The graph above also describes the performance of the voltage sensor over one to five test cycles, 

which can be used to describe the stability, accuracy, or other characteristics of the sensor. 

 

3.2. State Of Charge Testing with the Quantum Neural Network Method  

After conducting the lithium battery testing stage in real time, the method testing stage is carried out to 

determine the level of accuracy and prediction in the modeling of the QNN method that has been 

designed. The following are some of the stages of testing that were carried out, namely, testing the results 

of SoC prediction on QNN with qubit rotation and linear entanglement. 

 

3.2.1 Testing the State Of Charge Prediction Results on a Quantum Neural Network with Qubit 

Rotation 

The results of state of charge prediction on quantum neural networks with qubit rotation, which aims to 

improve the accuracy of SoC prediction in lithium-ion batteries. The rotation of qubits in quantum neural 

networks allows for faster and more efficient data processing. This research involves measuring two 

main parameters, namely current and voltage, during the battery charge and discharge cycle. The data 

from these measurements is used as input in the Quantum Neural Network to estimate the SoC value. 

The accuracy of the predictions is then compared with real-time data to evaluate the performance of this 

method. 

The test results show that the Quantum Neural Network with qubit rotation can generate highly accurate 

SoC predictions, close to real-time data. The use of qubit rotation in this model not only improves the 
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Figure 6: SoC prediction on the battery  
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prediction precision but also significantly reduces the computational time. The following is a qubit 

rotation test shown in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This graph plots two data sets labeled 'Actual' and 'Prediction,' represented by a red cross and a blue dot, 

respectively. This data is plotted on two axes: the horizontal axis labeled 'Voltage (V)' with a value range 

between about 10 to 12.5, and the vertical axis labeled 'State of Charge (SoC)' with a value range 

between 0 and 1.0. The graph shows that as the voltage increases, the SoC values also increase for both 

the actual and predicted values, although they show similar patterns but do not completely overlap. This 

graph is interesting because it compares experimental data or observations ('Actual') with the model or 

expected outcome ('Prediction'). In the upper left corner of the image, there is a regression score that 

shows "Regression Score: 0.7610743488468553," indicating that a regression analysis has been 

performed to evaluate how well the predicted value corresponds to the actual value. 

 

 

Table 2: QNN Performance Testing with Qubit Rotation 

RMSE MAPE 

0.14 61. % 

  

It can be seen that when using qubit rotation, the resulting MAPE and RMSE values are 0.14 RMSE 

values, as well as 61% of the value of MAPE. The RMSE value of quantum neural networks for qubit 

testing is greater than the MAPE value of neural networks due to the complexity of uncertainty models 

in quantum computing and quantum technology that are still in the development stage. 

 

3.2.2 Testing of State of Charge Prediction Results on Quantum Neural Network with Linear 

Entanglement 

Furthermore, the test of SoC prediction results on QNN with linear entanglement aims to assess the 

accuracy of the QNN model in predicting battery SoC using linear entanglement techniques. This 

technique utilizes quantum correlation to improve the efficiency and accuracy of predictions. This study 

measures two main parameters, namely current and voltage, during five battery charging and discharging 

cycles. The data obtained from these measurements is used as input in the QNN to estimate the SoC 

value. The evaluation is carried out by comparing the prediction results with real-time data to assess the 

model's performance. 

The test results show that QNN with linear entanglement is able to produce highly accurate SoC 

predictions, close to real-time data. The linear entanglement technique not only improves the accuracy 

of predictions but also significantly reduces the computational time. The following is a linear 

entanglement test shown in the figure below. 

 

Figure 7: SoC prediction on QNN with qubit rotation 
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On thehorizontal axis (X), we see the voltage value in volts that ranges from 10.5 to 12.5, while on the 

vertical axis (Y), the SoC value is displayed in percentages, ranging from 0.0000% to 120.0000%. The 

blue dots represent the actual value of the SoC, while the red cross represents the predicted value of the 

SoC. Both data sets show a similar trend: the higher the voltage, the higher the SoC value, which 

illustrates the positive correlation between voltage and SoC. In conclusion, a model or method that 

generates SoC predictions that are close to the actual value gives good results.  

 

Table 3: QNN Performance Testing with Linear Entanglement 

RMSE MAPE 

0.08 29. % 

Table 3 shows the relationship between the prediction values of the quantum neural network and the 

MAPE and RMSE values generated in the test. It can be seen that when using qubit rotation, the resulting 

MAPE and RMSE values are 0.08 RMSE values, as well as 29% of the values from MAPE. The MAPE 

and RMSE values in quantum neural networks for linear entanglement testing are smaller than the 

MAPE values for qubit rotation testing because linear entanglement offers a more appropriate and 

appropriate approach to a particular problem, which causes the RMSE values to be lower compared to 

qubit rotation in QNN.  

 

3.2.3 Testing State Of Charge Prediction Results on Neural Networks 

The results of state of charge prediction in NN are an innovative approach in estimating the battery 

charge rate at a certain time using concepts from quantum physics and neural networks. This approach 

aims to improve the accuracy and performance of SoC estimation, especially when it comes to handling 

complex battery estimates and behaviors that are difficult to model conventionally. The following graph 

of the results of the prediction of the state of charge on the neural network. 

 

 
Figure 9: SoC Prediction on NN 

Figure 8 is a graph that compares the actual state of charge and the prediction based on voltage. It should 

be noted that the red dot is the actual SoC, while the blue dot is the predicted SoC. The two data sets 

appear to be very close to each other, suggesting that SoC predictions are very accurate. This graph also 

Figure 8: SoC prediction on QNN with Entanglement Linear 
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shows the relationship between battery voltage and SoC estimation. On the x-axis is the voltage value 

(in volts), while on the y-axis is the SoC estimate (in percentage). It should be noted that the two data 

sets almost rest on a diagonal line, indicating a good fit between actual and predicted SoCs. 

 

Table 4: NN Performance Testing 

RMSE MAPE 

0.01 6 % 

 

Table 4 shows the relationship between the neural network prediction value and the MAPE and RMSE 

values generated in the test. It can be seen that when using qubit rotation, the resulting MAPE and RMSE 

values are 0.01 RMSE values, as well as 6% of the MAPE values. MAPE and RMSE values in neural 

networks seem to be lower and better than MAPE and RMSE values in quantum neural networks due to 

the use of simpler and more stable architectures. 

 

3.2.4 Comparison of SoC Estimated Performance using Quantum Neural Network compared to 

Real Time 

Estimating a battery's State of Charge (SoC) is an important process for measuring the amount of energy 

left in a battery. The two approaches used for SoC estimation are using a Quantum Neural Network 

(QNN) and real-time measurements. A comparative analysis of the performance of these two approaches 

involves evaluating the accuracy, efficiency, and reliability of the resulting SoC estimates as follows. 

 

Table 5: Comparison Estimates of Quantum Neural Network and Real-time 

Comparison 

Accuracy QNN: Generally more accurate under 

varying conditions because it can 

learn historical patterns and be 

adaptive to changes in battery 

conditions. 

Real Time: Accuracy can be 

affected by environmental 

conditions and sensor quality, and is 

more susceptible to noise. 

Efficiency QNN: After the initial training, SoC 

prediction can be done very quickly 

and efficiently. 

Real Time: Requires continuous 

measurement that can increase 

power consumption and data 

processing needs directly. 

 

Reliability QNN: More reliable in the long run 

because it can adapt to changing usage 

patterns and battery degradation. 

Real Time: Depends on the quality 

and condition of the sensor. Sensors 

that are degraded may reduce the 

reliability of measurements. 

 

In the table above, it can be concluded that the use of Quantum Neural Network (QNN) for State of 

Charge (SoC) estimation offers advantages in terms of prediction accuracy and reliability, especially in 

the long term and various operating conditions. Although real-time measurements provide immediate 

and fast information regarding the SoC, this method is more susceptible to accuracy and reliability issues 

affected by environmental conditions and sensor quality. Therefore, integrating QNN with real-time can 

provide an optimal solution, where QNN provides more stable predictions while real-time measurements 

ensure direct monitoring of battery health. 

 

3.2.5 Comparison of SoC Estimation Performance using Quantum Neural Network compared to 

Neural Network 

Comparison of the estimated performance of State of Charge (SoC) using Quantum Neural Network 

(QNN) compared to Neural Network (NN) can be evaluated based on several performance parameters 

such as accuracy, speed, computational complexity, and generalization ability. Here is the comparison.  
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1) Accuracy 

- Neural Network (NN): Traditional NNs have been proven to provide fairly accurate SoC 

estimation with the right dataset and good preprocessing. They are capable of handling the non-

linear relationship between battery parameters and the SoC. 

- Quantum Neural Network (QNN): QNNs have the potential to further improve accuracy through 

quantum processing, which can handle nonlinear and high complexity computing more efficiently 

than traditional NNs. QNN can be better at finding invisible patterns in large and complex data. 

 

2) Computing Speed 

- Neural Network (NN): With today's hardware, NNs can be trained and executed in a relatively 

fast time using GPUs or TPUs. 

- Quantum Neural Network (QNN): QNNs, when implemented on quantum computers, can offer 

much higher computational speeds in theory, especially for problems involving optimization and 

search in high-dimensional spaces. However, at present, the practical speed of QNN is limited by 

the capabilities of quantum hardware that is still in the development stage. 

 

3) Computational Complexity 

- Neural Network (NN): The computational complexity of NNs increases with the number of layers 

and neurons. NN training can be lengthy and requires significant computing resources. 

- Quantum Neural Network (QNN): QNN is expected to have lower computational complexity in 

some specific cases, due to the exponential nature of quantum computing. However, for now, 

developing and implementing QNNs is still a major challenge and requires specialized knowledge 

in the field of quantum computing. 

 

4) Generalization Ability 

- Neural Network (NN): NNs can overfit if not trained properly. However, with techniques such as 

regularization and cross-validation, the generalization capabilities of NNs can be improved. 

- Quantum Neural Network (QNN): QNN has the potential for better generalization thanks to its 

ability to handle the complexity and high variety of data. The superposition and interference 

capabilities in quantum computing allow QNN to explore more possible solutions simultaneously. 

 

5) Development and Implementation 

- Neural Network (NN): NN is very mature in terms of frameworks, algorithms, and supporting 

hardware. Tools like TensorFlow, PyTorch, and Keras make NN development easier and more 

affordable. 

- Quantum Neural Network (QNN): The development of QNN is still in its early stages. 

Frameworks and tools for QNN are still developing, such as IBM's Qiskit, and are not as mature 

as tools for NNN. QNN implementation also requires access to quantum computers that are not 

yet widely available. 

 

4. Conclusion 

 

In this study, the design of a prototype system used to determine the estimated state of charge (SoC) in 

lithium-ion batteries with the quantum neural network method is to uses tools including an ESP 32 

microcontroller, a voltage sensor, an ACS712 sensor, a 12 V fan, an imax b6AC, and a laptop. Based 

on the above testing of the QNN method, it shows that currently, Neural Networks (NN) are a more 

implementable and reliable option for estimating the State of Charge (SoC) in batteries in real-world 

situations. However, Quantum Neural Networks (QNNs) show great potential for the future, especially 

if quantum technology-related barriers can be overcome. With the completion of these challenges, QNN 

can provide a significant improvement in performance and efficiency in SoC estimation in batteries.  

Lithium battery test results In real time using the ACS712 voltage sensor and current sensor for five 

cycles, it can be concluded that the charging voltage variation over five cycles: the first cycle is 10.70 

V to 12.68 V, the second cycle is 10.56 V to 12.66 V, the third cycle is 10.60 V to 12.69 V, the fourth 

cycle is 10.60 V to 12.00 V, and the fifth cycle is 10.41 V to 12.07 V. ACS712 current sensor test,  after 
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calibration by comparing the readings of the microcontroller and multimeter using a power supply and 

a 12V fan, it shows that the charging current decreases as the voltage increases. In other words, the 

higher the voltage applied, the less current is detected. This study presents a comparison of the 

performance of SoC estimation using QNN compared to real-time. The use of Quantum Neural Network 

(QNN) for State of Charge (SoC) estimation offers advantages in terms of prediction accuracy and 

reliability, especially in the long term and various operating conditions. Although real-time 

measurements provide immediate and fast information regarding the SoC, this method is more 

susceptible to accuracy and reliability issues affected by environmental conditions and sensor quality. 

Therefore, integrating QNN with real-time can provide an optimal solution, where QNN provides more 

stable predictions while real-time measurements ensure direct monitoring of battery health. 
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