

PENERAPAN PEWARNAAN GRAF UNTUK OPTIMALISASI PENJADWALAN KULIAH DI PROGRAM STUDI MATEMATIKA

Rizka Nanda Amalia 1, a) Pardi Affandi 2, b)

^{1,2,3} Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Lambung Mangkurat

> a) 2111011220019@mhs.ulm.ac.id b) p affandi@ulm.ac.id

Abstrak. Penjadwalan kuliah merupakan tantangan penting di perguruan tinggi yang memerlukan pengelolaan waktu dan sumber daya secara efisien. Penelitian ini mengaplikasikan teori graf, khususnya algoritma pewarnaan graf Welch-Powell, untuk menyusun jadwal kuliah di Program Studi Matematika, Universitas Lambung Mangkurat. Metode ini bertujuan untuk menghindari bentrok jadwal antara dosen dan mahasiswa dengan memanfaatkan representasi graf. Setiap mata kuliah diwakili sebagai simpul, dan konflik antara mata kuliah diwakili sebagai sisi dalam graf. Hasil penelitian menunjukkan bahwa algoritma Welch-Powell efektif dalam menghasilkan jadwal kuliah yang teratur dan optimal. Pendekatan ini memungkinkan penggunaan ruang dan waktu secara maksimal. Selain itu, penelitian ini juga memberikan panduan praktis bagi institusi lain dalam menerapkan teori graf untuk pengelolaan jadwal akademik. Dengan hasil yang dicapai, diharapkan penjadwalan kuliah dapat dilakukan lebih cepat dan akurat. Hal ini akan mendukung peningkatan kualitas pendidikan yang lebih baik. Penelitian ini berkontribusi pada pengelolaan akademik yang lebih efisien dan terencana.

Kata Kunci: Teori graf, Pewarnaan graf, Algoritma Welch-Powell, Penjadwalan kuliah

1. Pendahuluan

Matematika adalah cabang ilmu yang mendasari banyak ilmu lainnya dan selalu berhadapan dengan fenomena yang semakin kompleks. Oleh karena itu, matematika ilmu yang sangat penting. Dengan menggunakan matematika, masalah-masalah dapat dipahami lebih baik, diselesaikan atau bahkan diidentifikasi bahwa suatu masalah tidak memiliki solusi. [1]. Salah satu cabang matematika yang dapat digunakan untuk mencari solusi atas berbagai masalah di berbagai bidang adalah teori graf. Sebagai bagian dari matematika diskrit, teori graf ini menarik untuk membahas isu-isu yang berkaitan dengan kehidupan sehari-hari [2]. Teori graf mendapatkan perhatian besar karena model-modelnya sangat berguna, contohnya penggunaan dalam jaringan komunikasi, transportasi, ilmu komputer, riset operasi dan berbagai aplikasi lainnya. Penggunaan graf di berbagai bidang ini bertujuan untuk memodelkan berbagai masalah. [3]

Penjadwalan kuliah merupakan salah satu aspek penting dalam pengelolaan kegiatan akademik di perguruan tinggi. Penjadwalan yang baik harus memastikan tidak adanya bentrok waktu bagi dosen maupun mahasiswa serta memaksimalkan pemanfaatan ruang kuliah. Namun, penyusunan jadwal sering kali menjadi tugas yang kompleks, terutama di program studi yang memiliki banyak mata kuliah, dosen, dan kelas yang harus disesuaikan. Salah satu tantangan utama adalah memastikan bahwa setiap mata kuliah yang memiliki dosen atau mahasiswa yang sama tidak terjadi pada waktu yang bersamaan.

Penggunaan pewarnaan graf dalam penjadwalan kuliah ini tidak hanya efisien dalam memecahkan masalah bentrok, tetapi juga mampu menyusun jadwal yang optimal sesuai dengan batasan dan kebutuhan yang ada. Oleh karena itu, penerapan algoritma pewarnaan graf dalam penjadwalan kuliah di Program Studi

Journal of Mathematics & Information Technology

Volume 3, Nomor 1, Tahun 2025 ISSN 3046-6792

Matematika diharapkan dapat menjadi solusi yang efektif dalam mengatasi kompleksitas penjadwalan, sehingga kegiatan perkuliahan dapat berjalan dengan lancar dan teratur. Pewarnaan simpul dalam graf dilakukan dengan memberikan warna pada setiap simpul sedemikian rupa sehingga tidak ada dua simpul yang bersebelahan memiliki warna yang identik. Dalam pewarnaan graf terdapat beberapa algoritma, salah satunya algoritma Welch Powell. Algoritma ini cukup praktis dan efisien digunakan dalam pewarnaan titik pada graf.

Secara umum, masalah penjadwalan diterapkan pada berbagai bidang dengan penugasan sumber daya terbatas yang terjadi dalam berbagai aktivitas untuk memenuhi tujuan yang dibutuhkan. Penjadwalan menjadi perhatian utama di Universitas karena sifat penjadwalan yang kompleks yang terjadi sebagai akibat dari meningkatnya jumlah mahasiswa dan acara dengan sumber daya terbatas seperti staf terbatas, ruang terbatas, dan slot waktu.

2. Tinjauan Pustaka

2.1 Graf

Graf adalah struktur matematika yang memodelkan jaringan. Graf terdiri dari sekumpulan titik yang disebut simpul (vertices). Sedangkan, garis yang menghubungkan titik-titik ini disebut sisi (edges) [4]. Graf adalah struktur diskrit yang terdiri dari sekumpulan objek berhingga yang disebut simpul (vertices atau vertex) dan sekumpulan sisi (edges) yang menghubungkan simpul-simpul tersebut. Graf G didefinisikan sebagai pasangan dari dua himpunan (G,V), dengan notasi G = (V, E). Dalam konteks ini, V adalah himpunan yang tidak kosong dari simpul-simpul (vertices dan node), sedangkan E adalah himpunan sisi (edges atau arcs) yang menghubungkan pasangan simpul [5].

2.2 Pewarnaan Graf

Pewarnaan graf adalah teknik untuk memberi warna pada elemen-elemen dalam graf, yang terdiri dari pewarnaan simpul (*vertex*) dan pewarnaan sisi (*edge*). Pewarnaan simpul pada graf yaitu dengan memberi warna pada simpul-simpul suatu graf sedemikian sehingga tidak ada dua simpul bertetangga yang memiliki warna yang sama [6].

2.3 Penjadwalan Kuliah

Permasalahan terkait waktu, tempat, dan aktivitas harus disesuaikan dengan waktu dan ruang yang telah ditentukan. Secara lebih spesifik, penjadwalan perkuliahan adalah proses penempatan jadwal untuk aktivitas kuliah tertentu dalam waktu dan ruang yang telah ditentukan. Penyelesaian masalah penjadwalan perkuliahan dalam skala besar masih merupakan tantangan yang kompleks untuk dilakukan secara manual. [7]

2.4 Algoritma Welch-Powell

Dalam matematika, terdapat metode untuk mengatasi masalah penjadwalan, yaitu dengan pewarnaan graf menggunakan Algoritma *Welch-Powell*. Algoritma ini adalah salah satu teknik pewarnaan graf yang melakukan pewarnaan berdasarkan derajat tertinggi setiap simpul. Dengan menggunakan algoritma *Welch-Powell*, graf dapat diwarnai secara efisien, sehingga dalam penjadwalan tidak akan ada kesamaan [8].

3. Metode Penelitian

3.1 Pendekatan Penelitian

Penelitian ini menggunakan pendekatan kuantitatif dengan memanfaatkan algoritma untuk menyelesaikan permasalahan penjadwalan mata kuliah menggunakan pewarnaan graf. Metode ini dipilih karena masalah penjadwalan dapat direpresentasikan dalam bentuk graf, di mana setiap simpul mewakili mata kuliah, dan setiap sisi menggambarkan adanya konflik atau keterkaitan antar mata kuliah.

3.2 Tahapan Penelitian

- 1. Pengumpulan Data
 - a. Sumber Data: Data yang diperlukan meliputi jadwal mata kuliah, data dosen, mahasiswa, serta

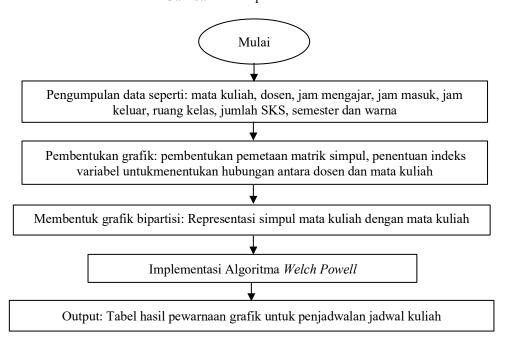
Journal of Mathematics & Information Technology

Volume 3, Nomor 1, Tahun 2025 ISSN 3046-6792

alokasi ruang kuliah di Program Studi Matematika

- b. Proses Pengumpulan Data: Data tersebut diperoleh melalui sistem informasi akademik atau dari administrasi kampus secara manual.
- c. Jenis Data yang Dikumpulkan:
 - 1) Data mengenai mata kuliah beserta jam kuliah dan nama dosen yang mengajar.
 - 2) Ketersediaan ruang kuliah.
 - 3) Data jumlah mahasiswa yang mengambil mata kuliah tertentu.
 - 4) Keterbatasan terkait waktu dan ruang yang tersedia.
- 2. Representasi Masalah dengan Graf
 - a. Mata kuliah akan diwakili sebagai simpul (vertices) dalam graf.
 - b. Sisi (edge) dalam graf akan menunjukkan adanya konflik, seperti:
 - 1) Dua mata kuliah diajar oleh dosen yang sama.
 - 2) Mata kuliah diikuti oleh mahasiswa yang sama.
 - 3) Ruang yang digunakan oleh lebih dari satu mata kuliah pada waktu yang sama.
- 3. Penerapan Algoritma Pewarnaan Graf

Algoritma yang akan digunakan adalah Algoritma *Welch-Powell*, karena algoritma ini cukup praktis dan efisien dalam memecahkan masalah pewarnaan simpul pada graf yang kompleks. Algoritma ini akan mewarnai setiap simpul graf (mata kuliah) sedemikian rupa sehingga simpul-simpul yang bertetangga (berkonflik) memiliki warna yang berbeda. Warna di sini mewakili slot waktu atau ruang yang berbeda.


3.3 Algoritma Welch-Powell

Algoritma Welch-Powell ini cukup praktis dan efisien digunakan dalam pewarnaan titik pada graf. Langkah-langkah algoritma Welch-Powell adalah sebagai berikut [6].

- 1) Urutkan semua simpul berdasarkan derajatnya, dari yang terbesar ke yang terkecil
- 2) Kemudian, diambil satu warna yaitu hijau. Warnai simpul yang tidak bertetangga dengan simpul pertama dengan warna yang sama (hijau).
- 3) Lanjutkan mewarnai sampai semua simpul telah diberi warna.

 Tahapan penelitian meliputi deskripsi data dosen dan mata kuliah dalam bentuk grafik, dengan proses pewarnaan graf menggunakan Algoritma *Welch-Powell* seperti berikut.

Gambar 1. Tahapan Penelitian

4. Hasil dan Pembahasan

Penyusunan Jadwal Kuliah untuk Program Studi Matematika di Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Lambung Mangkurat membutuhkan data terkait dosen, mata kuliah dan bobot SKS, hari perkuliahan dalam seminggu dan waktu perkuliahan. Data ini terlihat pada tabel berikut.

Tabel 1. Data Nama dan Kode Dosen

No	Nama Dosen	Kode
1	Dr. Pardi Affandi, S.Si, M.Sc	PA
2	Dr. Mochammad Idris, S.Si, M.Si	MI
3	Aprida Siska Letia, S.Si, M.Si	ASL
4	Dr. Na'imah Hijriati, S.Si, M.Si	NIH
5	Oni Soesanto, S.Si, M.Si	OS
6	Nurul Huda, S.Si, M.Si	NH
7	Yuni Yulida, S.Si, M.Sc	YY
8	Theresye, S.Si, M.Sc	TH
9	Drs. Faisal, M.Si	FA
10	Saman Abdurrahman, S.Si, M.Sc	SA
11	Dr. Muhammad Ahsar Karim, S.Si, M.Sc	MAK
12	Hermei Lissa, S.Pd, M.Si	HL
13	Akhmad Yusuf, S.Si, M.Kom	AY
14	Dra. Hj. Aisjah J. N., MS	AJ
15	Muhammad Afief Balya	MAB

Tabel tersebut memuat daftar nama dosen beserta kodenya. Kode ini digunakan untuk mempresentasikan dosen dalam graf dan proses pewarnaan graf untuk penjadwalan kuliah.

Tabel 2. Data Nama Mata Kuliah, Kode Mata Kuliah, SKS, Waktu, dan Status

No	Nama Mata Kuliah	Kode	SKS	Waktu	Status
1.	Kalkulus I	JAEB 3101	3	150'	Wajib
2.	Logika Matematika	JAEB 3102	2	100'	Wajib
3.	Metode Statistika	JAEB 3103	3	150'	Wajib
4.	Kalkulus Lanjut	JAEC 3301	2	100'	Wajib
5.	Persamaan Diferensial Biasa A	JAEC 3302	3	150'	Wajib
6.	Pengantar Teori Grup	JAEC 3303	3	150'	Wajib
7.	Pengantar Metode Numerik	JAEC 3304	3	150'	Wajib
8.	Matematika Diskrit	JAEC 3305	3	150'	Wajib
9.	Pengantar Basis Data	JAEC 4301	3	150'	Pilihan
10.	Logika dan Himpunan Fuzzy	JAEC 4303	3	150'	Pilihan
11.	Pengantar Matematika Keuangan	JAED 4301	3	150'	Pilihan
12.	Simulasi dan Komputasi Matematika	JAED 4302	3	150'	Pilihan
13.	Aljabar Linear	JAEC 3501	2	100'	Wajib
14.	Pengantar Fungsi Kompleks	JAEC 3502	3	150'	Wajib

EQUIVA Journal of Mathematics & Information Technology

Volume 3, Nomor 1, Tahun 2025 ISSN 3046-6792

15.	Pengantar Analisis Real II	JAEC 3503	3	150'	Wajib
16.	Pengantar Teori Estimasi dan Proses	JAEC 3504	3	150'	Wajib
	Stokastik				
17.	Pengantar Pemodelan Matematika	JAED 3501	3	150'	Wajib
18.	Matematika Aktuaria	JAED 3502	3	150'	Wajib
19.	Geometri Analitik	JAEB 3204	3	150'	Wajib
20.	Pengantar Teknik Reduksi Variabel	JAEC 4503	2	100'	Pilihan
21.	Pengantar Kendali Optimal	JAED 4503	3	150'	Pilihan
22.	Teori Graf	JAED 4504	3	150'	Pilihan

Berikutnya pada tabel 2 mencantumkan informasi tentang mata kuliah yang diajarkan, meliputi nama, kode mata kuliah, jumlah SKS, durasi waktu perkuliahan, dan status wajib atau pilihan. Data ini digunakan untuk menentukan konflik waktu dan alokasi mata kuliah.

Tabel 3. Data Nama Mata Kuliah, Kode Mata Kuliah, SKS, Nama Dosen, Waktu dan Status

Nama Mata Kuliah	Kode	SKS	Nama Dosen	Waktu	Status
Kalkulus 1	JAEB 3101	3	Dr. Muhammad Ahsar Karim, S.Si, M.Sc,	150'	Wajib
Logika Matematika	JAEB 3102	2	Aisjah, S.Si, M.Si Dr. Na'imah Hijriati, S.Si, M.Si, Dr.	100'	Wajib
Metode Statistika	JAEB 3103	3	Muhammad Ahsar Karim Aprida Siska Letia, S.Si, M.Si, Dr. Mochammad Idris, S.Si	150'	Wajib
Kalkulus Lanjut	JAEC 3301	2	Yuni Yulida, S.Si, M.Sc, Theresye, S.Si, M.Sc	100'	Wajib
Persamaan Diferensial Biasa A	JAEC 3302	3	Yuni Yulida, S.Si, M.Sc, Aisjah, S.Si, M.Si	150'	Wajib
Pengantar Teori Grup	JAEC 3303	3	Saman Abdurrahman, S.Si, M.Si, Dr. Na'imah Hijriati, S.Si, M.Si	150'	Wajib
Pengantar Metode Numerik	JAEC 3304	3	Akhmad Yusuf, S.Si, M.Kom, Oni Soesanto, S.Si, M.Si	150'	Wajib
Matematika Diskrit	JAEC 3305	3	Dr. Muhammad Ahsar Karim, S.Si, M.Sc, Muhammad Afief Balya	150'	Wajib
Pengantar Basis Data	JAEC 4301	3	Akhmad Yusuf, S.Si, M.Kom, Oni Soesanto, S.Si, M.Si	150'	Pilihan
Logika dan Himpunan Fuzzy	JAEC 4303	3	Saman Abdurrahman, S.Si, M.Si, Dr. Muhammad Ahsar Karim	150'	Pilihan
Pengantar Matematika Keuangan	JAED 4301	3	Hermei Lissa, S.Pd, M.Si, Aprida Siska Letia, S.Si, M.Si,	150'	Pilihan
Simulasi dan Komputasi Matematika	JAED 4302	3	Akhmad Yusuf, S.Si, M.Kom, Oni Soesanto, S.Si, M.Si	150'	Pilihan
Aljabar Linear	JAEC 3501	2	Thresye, S.Si, M.Sc, Saman Abdurrahman, S.Si, M.Si	100'	Wajib

EQUIVA Journal of Mathematics & Information Technology

Volume 3, Nomor 1, Tahun 2025 ISSN 3046-6792

Pengantar Fungsi Kompleks	JAEC 3502	3	Muhammad Afief Balya, Dr. Mochammad Idris, S.Si, M.Si	150'	Wajib
Pengantar Analisis Real II	JAEC 3503	3	Dr. Mochammad Idris, S.Si, M.Si, Dr. Muhammad Ahsar Karim, S.Si, M.Sc	150'	Wajib
Pengantar Teori Estimasi dan Proses Stokastik	JAEC 3504	3	Aprida Siska Letia, S.Si, M.Si, Dr. Mochammad Idris, S.Si, M.Si	150'	Wajib
Pengantar Pemodelan Matematika	JAED 3501	3	Drs. Faisal, M.Si, Yuni Yulida, S.Si, M.Sc	150'	Wajib
Matematika Aktuaria	JAED 3502	3	Muhammad Afief Balya, Aprida Siska Letia, S.Si, M.Si	150'	Wajib
Geometri Analitik	JAEB 3204	3	Hermei Lissa, S.Pd, M.Si, Saman Abdurrahman, S.Si, M.Si	150'	Wajib
Pengantar Teknik Reduksi Variabel	JAEC 4503	2	Dr. Mochammad Idris, S.Si, M.Si, Aprida Siska Letia, S.Si	100'	Pilihan
Pengantar Kendali Optimal	JAED 4503	3	Dr. Pardi Affandi, S.Si, M.Sc, Nurul Huda, S.Si, M.Si	150'	Pilihan
Teori Graf	JAED 4504	3	Dr. Pardi Affandi, S.Si, M.Sc , Nurul Huda, S.Si, M.Si	150'	Pilihan

Data pada tabel 3 ini digunakan untuk memastikan tidak adanya bentrok jadwal bagi dosen maupun mahasiswa.

Tabel 4. Data Hubungan Mata Kuliah dan Dosen

Kode Dosen	Kode Mata Kuliah
TH	JAEC 3301, JAEC 3501
MAB	JAEC 3305, JAEC 3502, JAED 3502
MI	JAEB 3103, JAEC 3502, JAEC 3503, JAEC 3504, JAEC 4503
ASL	JAEB 3103, JAED 4301, JAED 3502, JAEC 3504, JAEC 4503
MAK	JAEB 3101, JAEC 3305, JAEC 4303, JAEC 3503, JAEB 3102
SA	JAEC 3303, JAEC 4303, JAEC 3501, JAEB 3204
PA	JAED 4503, JAED 4504
FA	JAED 3501
NH	JAED 4503, JAED 4504
NIH	JAEB 3102, JAEC 3303
OS	JAEC 3304, JAEC 4301, JAED 4302
HL	JAED 4301, JAEB 3204
YY	JAEC 3301, JAEC 3302, JAED 3501
AY	JAEC 3304, JAEC 4301, JAED 4302
AJ	JAEB 3101, JAEC 3302

Tabel 4 ini akan digunakan untuk membangun graf yang merepresentasikan konflik penjadwalan berdasarkan keterlibatan dosen di berbagai mata kuliah.

Selanjutnya, berdasarkan langkah – langkah algoritma welch-powell maka akan membentuk sebuah graf seperti berikut.

JAEB 3101 JAEB 3102 JAED 4504 **JAEB 3103** JAED 4503 JAEC 3301 **JAEC 4503** JAFC 3504 JAFC 3503 JAEC 3502 JAEC 3501 JAED 4302

Gambar 2. Representasi Simpul (Mata Kuliah) yang Bertetangga

Berikutnya, salah satu simpul akan diwarnai berdasarkan simpul yang mempunyai derajat tertinggi. Misalkan diambil satu warna yaitu hijau. Kemudian, warnai simpul yang bertetangga dengan warna yang berbeda (misal merah). Selanjutnya, untuk simpul yang tidak bertetangga dengan simpul pertama dengan warna yang sama (hijau).

Gambar 3. Pemberian Simpul (Mata Kuliah) Pada Graf

Berdasarkan Gambar 3 tersebut, maka dapat dikelompokan mata kuliah berdasarkan hari seperti pada tabel 5 berikut.

Journal of Mathematics & Information Technology

Volume 3, Nomor 1, Tahun 2025 ISSN 3046-6792

Tabel 5. Pengelompokan Mata Kuliah Sesuai Hari

Warna	Mata Kuliah
Merah	Kalkulus I, Kalkulus Lanjut, Pengantar Basis Data, Pengantar Matematika Keuangan,
	Simulasi dan Komputasi Matematika, Pengantar Fungsi Kompleks
Biru	Persamaan Diferensial Biasa A, Pengantar Teori Grup, Matematika Distrik,
	Matematika Aktuaria I, Teori Graf
Hijau	Metode Statistika, Pengantar Analisis Real II, Pemodelan Matematika, Pengantar
	Kendali Optimal
Ungu	Logika Matematika, Logika dan Himpunan Fuzzy, Aljabar Linear, Pengantar Teknik
	Reduksi Variabel
Kuning	Pengantar Metode Numerik, Pengantar Teori Estimasi dan Proses Stokastik,
	Geometri Analitik

Setiap warna pada Tabel 5, warna menunjukkan hari kuliah. Warna yang berbeda menunjukkan hari yang berbeda.

- a) Warna merah menunjukkan hari senin
- b) Warna biru menunjukkan hari selasa
- c) Warna ungu menunjukkan hari rabu
- d) Warna hijau menunjukkan hari kamis
- e) Warna kuning menunjukkan hari jum'at

Tabel 6. Jadwal Mata Kuliah Semester 1

No	Kode Mata Kuliah	Mata Kuliah	Kode Dosen	SKS	Warna
1	JAEB 3101	Kalkulus I	MAK, AS	3	
2	JAEB 3103	Metode Statistika	ASL, MI	3	
3	JAEB 3102	Logika Matematika	NIH, MAK	2	

Berdasarkan Tabel 6 terdapat 2 warna pada jadwal mata kuliah di semester 1 Matematika ULM, yang artinya dalam 1 minggu ada 2 hari yang terdapat mata kuliah semester 1 yaitu hari senin dan rabu.

Tabel 7. Jadwal Mata Kuliah Semester 3

No	Kode Mata Kuliah	Mata Kuliah	Kode Dosen	SKS	Warna
1	JAEB 3204	Geometri Analitik	HL, SA	3	
2	JAEC 3302	Persamaan Diferensial Biasa A	YY, AS	3	
3	JAEC 3301	Kalkulus Lanjut	TH, YY	2	
4	JAEC 3305	Matematika Diskrit	MAK, MAB	3	
5	JAEC 3303	Pengantar Teori Grup	SA, NIH	3	
6	JAEC 3304	Pengantar Metode Numerik	AY, OS	3	
7	JAED 4301	Pengantar Matematika Keuangan	ASL, HL	3	
8	JAED 4302	Simulasi dan Komputasi	AY, OS	3	
		Matematika			
9	JAEC 4303	Logika dan Himpunan Fuzzy	SA, MAK	3	
10	JAEC 4301	Pengantar Basis Data	AY, OS	3	

Berdasarkan Tabel 7 terdapat 5 warna pada jadwal mata kuliah di semester 1 Matematika ULM, yang artinya dalam 1 minggu ada 5 hari yang terdapat mata kuliah semester 1 yaitu hari senin, selasa, rabu, kamis dan jum'at.

Berdasarkan Tabel 8 terdapat 5 warna pada jadwal mata kuliah di semester 1 Matematika ULM, yang artinya dalam 1 minggu ada 5 hari yang terdapat mata kuliah semester 1 yaitu hari senin, selasa, rabu, kamis dan jum'at.

EQUIVA Journal of Mathematics & Information Technology

Volume 3, Nomor 1, Tahun 2025 ISSN 3046-6792

Tabel 8. Jadwal Mata Kuliah Semester 5

No	Kode Mata Kuliah	Mata Kuliah	Kode Dosen	SKS	Warna
1	JAED 4504	Teori Graf	PA, NH	3	
2	JAEC 3502	Pengantar Fungsi Kompleks	MI, MAB	3	
3	JAEC 3501	Aljabar Linear	SA, TH	3	
4	JAED 4503	Pengantar Kendali Optimal	PA, NH	3	
5	JAEC 3503	Pengantar Analisis Real II	MI, MAK	3	
6	JAED 3501	Pengantar Pemodelan	YY, FA	3	
		Matematika			
7	JAED 3502	Matematika Aktuaria	ASL, MAB	3	
8	JAEC 3504	Pengantar Teori Estimasi dan	ASL, MI	3	
		Proses Stokastik			
9	JAEC 4503	Pengantar Teknik Reduksi	ASL, MI	3	
		Variabel			

5. Kesimpulan

Penerapan algoritma Welch-Powell dalam penjadwalan kuliah di Program Studi Matematika telah terbukti efektif dalam menyelesaikan masalah bentrok jadwal. Dengan memanfaatkan konsep pewarnaan graf, penelitian ini dapat mengelompokkan mata kuliah berdasarkan waktu dan alokasi ruang, sehingga meminimalkan konflik antara mata kuliah yang diajarkan oleh dosen yang sama atau diambil oleh mahasiswa yang sama. Hasilnya, jadwal kuliah yang dihasilkan tidak hanya efisien tetapi juga terstruktur dengan baik, mendukung kelancaran proses belajar mengajar di perguruan tinggi. Selain itu, penelitian ini memberikan kontribusi penting dalam pengelolaan akademik dan dapat diterapkan di program studi lain dengan masalah serupa. Penelitian ini dapat dikembangkan lebih lanjut dengan mempertimbangkan faktorfaktor lain seperti preferensi mahasiswa dan ketersediaan ruang yang lebih dinamis.

6. Referensi

- [1] F. F. Kawatu, V. E. Regar, P. Studi, P. Matematika, and U. N. Manado, "Welch-Powell Algorithm Implementation In Compiling Lecture Schedules In The Mathematics Education Study Program, Manado State University," vol. 1, no. 2, 2023.
- [2] R. M. Rohmawati and M. I. A. Fathoni, "Penerapan Algoritma Welch-Powell Pada Penyusunan Jadwal Perkuliahan di Program Studi Pendidikan Matematika," vol. 10, no. 2, pp. 200–210, 2022.
- [3] A. M. Nasir and D. Setyawan, "Optimalisasi Penjadwalan Mata Kuliah Menggunakan Teori Pewarnaan Graf," vol. 5, pp. 57–69, 2021.
- [4] M. Van Der Wegen, *Complexity of Graph Problems : Gonality , Colouring and Scheduling.* 2021. doi: 10.33540/709.
- [5] Apriyanto, "Pewarnaan graph berbasis algoritma welch powell dalam pengaturan jadwal praktikum," vol. 1, no. 1, pp. 11–21, 2018.
- [6] R. R. Gani, "PENERAPAN PEWARNAAN TITIK PADA GRAF UNTUK MENYUSUN JADWAL PELAJARAN (STUDI KASUS MI AL WATHONIYYAH 02 SEMARANG)," 2018.
- [7] Y. Prima, F. Made, and S. Ariantini, "UNTUK OPTIMALISASI PERUBAHAN JADWAL KULIAH BERBASIS MOBILE ANDROID (STUDI KASUS: STIKI INDONESIA)," pp. 208–217.
- [8] B. Muflikhudin, "Teknik pewarnaan graf pada penjadwalan piket osis dengan algoritma welch-powell pada smp negeri 2 kemranjen," vol. 1, no. 2, pp. 8–13, 2020.