
Innovative Informatics and Artificial Intelligence Research (IIAIR)
Vol. 1, issue 1, pp. 19-25, 2025

Received 18 Dec 2024; accepted 23 March 2025; published 30 Apr 2025
https://doi.org/10.35718/iiair.v1i1.1277

 https://journal.itk.ac.id/index.php/IIAIR

BBG52: A New Dataset for Plant 
Species Recognition in the 
Balikpapan Botanical Gardens, 
Borneo Island
Rahmat Ramadhani 1, Gusti Ahmad Fanshuri Alfarisy 1, and Boby Mugi Pratama1

1Department of Informatics, Institut Teknologi Kalimantan, Balikpapan 76127, Indonesia

Corresponding author: Gusti Ahmad Fanshuri Alfarisy (gusti.alfarisy  @lecturer.itk.ac.id  )

To cite this article: R. Ramadhani, G. A. F. Alfarisy, B. M. Pratama, “BBG52: A New Dataset for Plant Species Recognition in the 
Balikpapan Botanical Gardens, Borneo Island,” Innovative Informatics and Artificial Intelligence Research,  vol. 1, issue 1, 2025. 
[Online]. Available: https://doi.org/10.35718/iiair.v1i1.127

Gusti Ahmad Fanshuri Alfarisy serves as an Editor of IIAIR but was not involved in the peer-review process of this article

Abstract
The Balikpapan Botanical Garden serves as a conservation 
area in Indonesia for preserving biodiversity, particularly the 
endemic  species  of  Kalimantan.  Accurate  and  efficient 
identification and classification of plant species are crucial for 
conservation efforts. However, traditional methods are often 
time-consuming and require expert knowledge, highlighting 
the  need  for  an  automated  approach.  In  this  study,  we 
manually  collected  a  dataset  of  natural  images  in  the 
Balikpapan  Botanical  Garden  that  simulates  real-world 
conditions and contain 5,200 image samples of 52 different 
plant species named BBG52. We compared the manual train-
test data splitting by considering intra-class variants against 
random splitting to evaluate the performance differences. To 
construct  a  classification  model,  we  employed  ResNet 
variants as pre-trained models—ResNet-34, ResNet-50, and 
ResNet-101— and examined the effect of the hidden layer in 
the  classification part  of  the  model.  Our  empirical  results 
demonstrate  that  manual  data  splitting  yields  better 
performance than random splitting. Furthermore, the ResNet-
50 model without additional hidden layers achieved the best 
performance with an accuracy of 96.88% and F1-score of 
0.9689.  The  computational  analysis  provided  empirical 
evidence  that  the  model  runs  efficiently,  requiring 0.1379 
seconds  on  a  CPU  and  0.0861  seconds  on  a  GPU, 
demonstrating the model’s efficiency for constrained device. 
The  BBG52  dataset  is  openly  accessible  at 
https://github.com/inidhanii/BBG52

Keywords: computer vision; plant classification; balikpapan 
botanical gardens; residual network; transfer learning; deep 
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1. Introduction

Plant biodiversity is one of the most valuable assets on Earth, 
playing a crucial role in maintaining ecological balance. It not 

only provides oxygen and essential resources for humans but 
also serves as food and shelter for various animal species [1]. 
Unfortunately, biodiversity loss due to deforestation, climate 
change, and human activities has threatened the balance of 
plant  species.  A  recent  study  has  estimated  that  45%  of 
flowering plant species are at risk of extinction [2]. One such 
conservation  effort  is  the  Balikpapan  Botanical  Gardens 
located in Balikpapan, East Borneo. It has a role of preserving 
Indonesia’s biodiversity, particularly the endemic species of 
Borneo [3]. 

Accurate  and  efficient  plant  species  classification  is  a 
crucial aspect of conservation efforts but remains challenging 
due to the immense number of species and limited available 
expertise  [4].  Traditional  classification  methods  require 
extensive  manual  effort,  such  as  botanists  manually 
identifying species  from images.  This  process  is  not  only 
time-consuming but also prone to human error, highlighting 
the  need  for  an  automated  approach  [5].  Meanwhile, 
automated classification systems offer a solution to overcome 
these limitations and enable  large-scale  identification with 
high efficiency.

The  rapid  development  in  the  deep  learning  field, 
particularly  Convolutional  Neural  Networks  (CNN)  has 
revolutionized image classification and identification tasks, 
which  include  plant  species  classification  [6].  CNN 
architectures such as Residual Networks (ResNet) introduce 
skip connections to allow the model to have lots of layers 
without  experiencing  vanishing  gradient  issues  [7].  Prior 
studies often used scanned leaf images for classification [8, 9]
. While effective, this approach has challenges, including the 
need to scan leaves in optimal positions and conditions, which 
often requires specialized equipment and requires more labor. 
This  becomes  impractical  for  large-scale  applications. 
Meanwhile, some studies have explored the use of natural 
images captured directly in real-world environments [10, 11]. 
This  approach  offers  practical  advantages  for  real-world 
applications as it  significantly reduces the complexity and 
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time required for image acquisition by removing the need for 
complex scanning procedures.

While CNNs like ResNet have shown significant potential 
in  image  classification,  their  effectiveness  relies  on  the 
availability of sufficient and high-quality datasets. Common 
issues  such  as  small  dataset  sizes,  class  imbalance,  and 
labeling errors can all negatively impact the performance of a 
model [12]. To overcome this limitation, transfer learning was 
introduced as an effective solution. By leveraging models pre-
trained on large datasets such as ImageNet, transfer learning 
enables efficient feature extraction for more specific tasks, 
such as plant image classification, while reducing training 
time  and  mitigating  challenges  that  might  exist  by  using 
smaller  datasets  [6].  Prior  studies  have demonstrated how 
using transfer learning can enhance model performance by 
utilizing  prior  knowledge,  such  as  shape  and  texture 
recognition [13, 14]. 

This study aims to propose a new dataset in plant species 
identification and to investigate the potential of using  the 
Residual  Network  architecture  with  transfer  learning  to 
classify plant species at the Balikpapan Botanical Gardens 
using  natural  images  captured  using  mobile  devices.  In 
summary, the contributions of this study are as follows:
1. Proposing  a  new  dataset  for  plant  species  in  the 

Balikpapan Botanical Gardens that can be utilized for 
future research in the relevant industry named BBG52.

2. Exploring  how  data  splitting  methods  affect  model 
performance: manual vs. random.

3. Exploring  the  performance  of  Residual  Network 
architecture using transfer learning for the classification 
of plant species within our new proposed dataset.

4. Exploring  how  additional  hidden  layers  affect  model 
performance.

2. Related Works

Prior studies in the field of automatic plant classification have 
demonstrated the potential of various deep learning models. 
The  most  widely  used  approach  is  Convolutional  Neural 
Networks  (CNN),  which  are  particularly  effective  in 
processing image data to classify plant species. Pujiati and 
Rochmawati [9] investigated the classification of herbal plant 
leaves  using  CNN.  Their  model,  consisting  of  three 
convolutional  layers  and  two  fully  connected  layers,  was 
utilized to classify 33 species of herbal plants using a dataset 
consisting  of  21,450  leaf  images.  The  results  showed  an 
accuracy of 84% during testing, demonstrating the capability 
of  CNN  to  handle  complex  classification  problems, 
particularly for species with morphologically similar features.

A study by Falahkhi et al. [13] compared the performance 
of two pre-trained models utilizing transfer learning, ResNet 
and  AlexNet  for  flower  classification.  They  utilized  the 
Flower102 dataset with 8,189 images across 102 categories. 
The study found that ResNet achieved an accuracy of 97.6%, 
outperforming AlexNet, which achieved 90.2%. This result 
highlights  the  advantages  of  transfer  learning.  Pre-trained 
models  on  large  datasets,  such  as  ImageNet,  can  adapt 
effectively to smaller,  domain-specific  datasets.  Moreover, 
the  capability  of  ResNet  to  address  gradient  vanishing 
problems  in  deep  architectures  contributed  to  its  superior 
performance.

Musyaffa  et  al.   [14] conducted  a  study  on  the 
classification  of  Indonesian  herbal  plants  using  transfer 
learning. Five CNN models—ResNet-34, DenseNet, VGG11, 

ConvNeXt, and Swin Transformer—were evaluated using a 
dataset derived from the Vietnam Medicinal Plant dataset [15]
consisting of 20,000 images across 200 categories. They also 
introduced  a  new  dataset  of  100  Indonesian  herbal  plant 
categories collected via Google Images, comprising 10,000 
images. They employed augmentation techniques to address 
the imbalance in certain classes. The best performance was 
achieved by ConvNeXt,  with  an accuracy of  92.5%.  This 
study highlights  the efficacy of  transfer  learning and data 
augmentation in addressing the limitations of small datasets.

Atique et al.  [8] focused on species classification using 
leaf venation patterns. They applied ResNet and DenseNet 
models to the MalayaKew dataset, which contains 44 tropical 
tree species with 64 images per category. Using Canny edge 
detection to extract venation features, the study found that 
DenseNet-169 achieved the highest accuracy of 95.72% using 
Adam optimizer, outperforming ResNet-101, which achieved 
89.50%. This  result  highlights  DenseNet's  effectiveness  in 
handling venation-based plant classification tasks.

Sun  et  al.  [10] explored  plant  classification  in  natural 
environments using a deep learning model with 26 layers and 
8  residual  blocks  to  classify  ornamental  plant  species  at 
Beijing  Forestry  University  (BJFU).  Using  the  BJFU100 
dataset, which comprises 10,000 mobile-captured images of 
100 species, their ResNet-26 model achieved an accuracy of 
91.78%. This study demonstrated the suitability of ResNet 
architectures for handling natural images and mobile-acquired 
datasets. Meanwhile, Bodhwani et al. [11] applied ResNet-50 
for plant species classification using the LeafSnap dataset, 
which includes 30,866 leaf images from 185 tree species in 
the  northeastern  United  States.  Their  model  achieved  an 
accuracy of 93.09%, demonstrating the robustness of ResNet 
in  classifying  plant  species,  especially  under  natural 
environmental conditions.

In summary, the mentioned studies collectively emphasize 
the significant  contributions of  CNN and transfer  learning 
techniques  in  advancing  plant  species  classification, 
especially when addressing challenges posed by limited data 
and using images captured in a natural environment.
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Figure 1:  Sample images from the BBG52 dataset. 
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3. Proposed BBG52 Dataset

The BBG52 dataset  consists  of  images  collected  from 52 
different species located in the Balikpapan Botanical Gardens, 
Balikpapan  City.  The  dataset  is  captured  using  a  mobile 
device  under  various  lighting  conditions,  angles,  and 
distances. Each class contains 100 images, which makes a 
total of 5,200 images in the dataset. 

Sample images from the BBG52 dataset are presented in 
Figure 1. The sample includes (a) Alstonia angustiloba Miq, 
(b) Borassodendron borneensis J. Dransf, (c) Ixora javanica, 
(d) Licuola spinosa, (e) Mussaenda philippica, (f) Nepenthes 
mirabilis  Druce,  (g)  Pandanus  pygmaeus  Thouars,  (h) 
Allamanda cathartica L, (i) Strombosia ceylanica Gardn, (j) 
Terminalia  mantaly  H.Perrier,  (k) Acalypha  wilkesiana 
Müll.Arg, (l) Ruellia simplex C.Wright, (m) Furcraea foetida 
(L.)  Haw,  (n)  Kalanchoe pinnata,  (o)  Koompassia excelsa 
(Becc.)  Taub,  (p)  Vatica  umbonata  Burck,  (q)  Dracaena 
reflexa  Lam,  (r)  Costus  woodsonii  Maas,  (s)  Excoecaria 
cochinchinensis Lour, and (t) Hibiscus rosa-sinensis L. 

4. Methods

4.1 Data Preparation
The dataset will be split with a 60-40 ratio, with 60% of the 
data used for training and 40% for validation/testing. A 60:40 
split is chosen based on the approach used in the Vietnam 
Medicinal Plant dataset [15].  With 5,200 images, the training 
set  will  contain  3,120  images,  while  the  validation  will 
contain  2,080  images.  The  data  splitting  process  will  be 
performed  both  manually  and  randomly,  resulting  in  two 
dataset variations. 

In the manual split,  images are selected into either the 
training or validation set while ensuring intra-class variations 
such as  differences  in  lighting,  physical  conditions  of  the 
plants, or growth stages are represented in both the training 
and validation sets. By maintaining this representation, the 
model is expected to recognize patterns more effectively and 
produce  better  performance  on  both  the  training  and 
validation data. Meanwhile, the random split will be carried 
out using the train_test_split function in Scikit-learn python 
library,  ensuring  a  random  division  of  the  data  with  the 
predetermined ratio.

Image  augmentation  using  RandAugment  [16] will  be 
undertaken to add variation to the training set  and ensure 
model  robustness,  resulting  in  better  generalization  of  the 
model. All images will be resized to a dimension of 224x224 
pixels  to  reduce  computational  load  during  the  training 
process and normalized using ImageNet mean and standard 
deviation values to ensure effective knowledge transfer.

4.2 ResNet Model Implementation
Residual Network (ResNet) is a convolutional neural network 
architecture  designed  to  overcome  the  vanishing  gradient 
problem, where the gradient diminishes as layers increase, 
slowing weight updates and hindering performance. ResNet 
uses skip connections that allow the input of a layer to bypass 
the next layer and flow into the next layer, stabilizing the 
network during training. This technique, known as a residual 
block, works based on Equation 1.

(1)

In Equation 1,  is the input to the next layer.   
represents the transformation applied at that layer, with  as 
its weights.  The transformation   is added to , so 
the output of the residual block is the combination of the 
original data and the transformed result, which is  , the 
residual block ensures that important information is not lost 
during transformation [7, 17].

This  study  will  evaluate  three  pre-trained  Residual 
Network  models:  ResNet-34,  ResNet-50,  and  ResNet-101 
acquired from the PyTorch library [18]. These models are 
chosen  to  evaluate  the  dataset  because  of  the  different 
complexities of each model. The implementation begins by 
loading the pre-trained models, which were initially trained on 
the ImageNet dataset. Each model will undergo a freezing 
process where the convolutional layers are frozen, and only 
the final classification layer will be trained. This approach 
allows  the  model  to  retain  the  knowledge  learned  from 
ImageNet while adjusting the final classification layer to suit 
the plant species classification task using the collected dataset. 
To adapt to the number of plant species classes in the dataset, 
the final classification layer of each ResNet model is replaced 
with a new fully connected layer with 52 outputs matching the 
number of classes in the collected dataset.

During  the  training  phase,  only  the  newly  added fully 
connected  layer  is  trained,  while  the  convolutional  layers 
remain frozen to preserve the weights learned from ImageNet. 
This  technique  helps  prevent  overfitting  and  accelerates 
model  convergence,  as  the  convolutional  layers  already 
contain  strong  feature  representations  learned  from  the 
ImageNet dataset.

4.3 Evaluation Metrics
In this study, the model performance is evaluated based on 

accuracy  and  F1-Score.  Accuracy  is  a  key  metric  for 
evaluating a classification model, representing the proportion 
of correctly predicted instances (both positive and negative) 
out of the total cases. Accuracy is calculated as presented in 
Equation 2.

(2)

In Equation 2, TP is True Positives, TN is True Negatives, FP 
is False Positives, and FN is False Negatives, which are the 
different categories of predictions. While accuracy provides a 
general performance measure, it may be misleading in cases 
of class imbalance, as it  does not account for the model's 
performance across all classes.

Precision evaluates the quality of positive predictions by 
calculating the ratio of true positives (TP) to the sum of true 
positives and false positives (FP) as shown in Equation 3:

(3)

Precision metric is crucial in scenarios where the cost of 
false positives is high, such as medical diagnostics, ensuring 
that predicted positives are mostly accurate.

Recall, or sensitivity, measures a model's ability to identify 
all  relevant  positive  cases,  calculated  as  the  ratio  of  true 
positives to the total number of actual positives (TP + FN), 
which is shown in Equation 4.
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(4)

Recall is essential in contexts where missing positive cases 
could have serious consequences, such as disease detection, 
where high recall ensures most true positives are identified.

The F1-Score combines both precision and recall into a 
single measure, representing the harmonic mean of the two as 
presented in Equation 5.

(5)

The  F1-Score  is  particularly  useful  for  imbalanced 
datasets,  as  it  provides  a  balanced  view  of  the  model’s 
performance,  ensuring  that  both  false  positives  and  false 
negatives are considered.

The mean computation time of each model will also be 
evaluated to see the efficiency of the three ResNet models 
after acquiring the best hidden layer configuration.

5. Experimental Settings

Each ResNet model will be tested with three hidden layer 
configurations: no additional hidden layer, one hidden layer, 
and two hidden layers. Each additional hidden layer will have 
512  neurons  and  will  be  followed  by  a  ReLU activation 
function. We set the hyperparameters of the models including 
the number of epochs, learning rate, batch size, and optimizer 
as shown in Table 1. We employed the cross-entropy loss as 
the loss function to train the model.

Table 1: Hyperparameter settings

Hyperparameter Value
Epoch 50

Optimizer Adam

Learning Rate 0.001

Batch Size 32

 For the device, we used an NVIDIA GTX 1650 Ti 4GB 
GPU with CUDA support for faster parallel computations. 
The training process was conducted on Windows 11 operating 
system.

The experiment evaluates the impact  of  manual  versus 
random data  splitting  on  the  performance  of  the  baseline 
ResNet-34  model  (without  additional  hidden  layers).  This 
aims to evaluate how data splitting methods influence the 
performance of the model.

The next experimentation is performed on all three ResNet 
models, with each tested with three configurations, including 
no hidden layers, one hidden layer, and two hidden layers 
utilizing 512 neurons for each hidden layer. Manual splitting 
ensures consistent data partitioning in this experiment.

After identifying the best hidden layer configuration, we 
will  evaluate  the  computation  time  of  each  model.  This 
involves 100 samples to perform inference through the model 
using  random  images  from  the  collected  dataset.  The 
computation time will be tested on a AMD Ryzen 5 4600H 
3.00 GHz CPU and NVIDIA GTX 1650 Ti 4GB GPU. The 
mean computation time across all 100 samples is calculated to 
derive representative computational time.

6. Results and Discussions

6.1 Data Splitting Methods Testing
Testing the effect  of data splitting was performed using a 
baseline model ResNet-34 with no additional hidden layers. 
The testing was conducted twice using two dataset variants: 
one dataset was manually split with attention to intra-class 
variation,  and  the  other  was  automatically  split  using  a 
random train-test split. 

Based  on  Figure  2,  the  performance  of  the  ResNet-34 
model  with  manually  and  randomly  split  datasets  can  be 
observed.  The  model  using  the  manually  split  dataset 
achieved the highest accuracy of 95.12%  as shown in Figure 
2a and an F1-Score of 0.9512 at epoch 48 as shown in Figure 
2b,  whereas  the  model  using  the  randomly  split  dataset 
achieved the highest accuracy of 93.94% and an F1-Score of 
0.9397 at epoch 49.
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(a)

(b)

Figure 2: Graph of Accuracy and F1-Score using two different data 
splitting methods. 

(a)

(b)

Figure 3: Graph of Accuracy and F1-Score on ResNet-34 with 
Various Additional Hidden Layers
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Both models  showed improved performance as  epochs 
increased. However, from epoch 5 onward, the manually split 
dataset consistently outperformed the randomly split dataset 
in accuracy and F1-score. This difference remained consistent 
until  the end of training,  where the manually split  dataset 
yielded 1.18% higher accuracy and 0.0115 higher F1-Score 
than the randomly split dataset.

One  scenario  explaining  this  result  is  that  manually 
splitting the data, while more time-consuming due to the need 
to select each image individually, ensures a more balanced 
distribution between training and testing data, reflecting the 
actual distribution in the dataset and real-world conditions. In 
contrast,  random splitting may create  an imbalanced class 
distribution, reducing the model’s ability to generalize.

6.2 ResNet Models Testing
Testing was conducted on three ResNet models: ResNet-34, 
ResNet-50, and ResNet-101, with three variations for each 
model:  no additional  hidden layers,  one  additional  hidden 
layer,  and  two  additional  hidden  layers.  Each  additional 
hidden  layer  consisted  of  512  neurons,  and  the  ReLU 
activation function was used. Evaluation results for ResNet-
34, ResNet-50, and ResNet-101 are shown in Figure 3, Figure
4 and Figure 5 respectively. 

Based on Figure 3, the performance of three variants of the 
ResNet-34 models can be observed. The ResNet-34 model 
without  additional  hidden  layers  achieved  the  highest 
accuracy of 95.12% as shown in Figure 3a and an F1-Score of 
0.9512 at epoch 48 as shown in Figure 3b. Meanwhile, the 
ResNet-34 model with one additional hidden layer achieved 
the highest accuracy of 95% and an F1-Score of 0.9498 at 
epoch 33, and the model with two additional hidden layers 
achieved the highest accuracy of 95.05% and an F1-Score of 
0.9503 at epoch 47. 

Based on Figure 4, the performance of the three variants of 
the ResNet-50 models can be observed. The ResNet-50 model 
without  additional  hidden  layers  achieved  the  highest 
accuracy of 96.88% as shown in Figure 4a and an F1-Score of 
0.9689 at epoch 48 as shown in Figure 4b. Meanwhile, the 

ResNet-50 model with one additional hidden layer achieved 
the highest accuracy of 96.59% and an F1-Score of 0.9658 at 
epoch 50, and the model with two additional hidden layers 
achieved the highest accuracy of 96.35% and an F1-Score of 
0.9631 at epoch 40.

Based on Figure 5, the performance of the three variants of 
the ResNet-101 models can be observed.  The ResNet-101 
model without additional hidden layers achieved the highest 
accuracy of 96.88% as shown in Figure 5a and an F1-Score of 
0.9685 at epoch 46 as shown in Figure 5b. Meanwhile, the 
ResNet-101 model with one additional hidden layer achieved 
the highest accuracy of 96.54% and an F1-Score of 0.9654 at 
epoch 49, and the model with two additional hidden layers 
achieved the highest accuracy of 96.78% and an F1-Score of 
0.9679 at epoch 44.

The performance patterns across all three ResNet models 
were  consistent:  adding  hidden  layers  resulted  in  a  slight 
decline in performance. For ResNet-34, the model without 
additional hidden layers achieved the best accuracy and F1-
Score, with declines of 0.12% in accuracy and 0.0014 in F1-
Score for one additional hidden layer and declines of 0.7% in 
accuracy and 0.0009 in F1-Score for two additional hidden 
layers.  Similar  trends  were  observed  in  ResNet-50  and 
ResNet-101,  where  the  highest-performing  configurations 
were  those  without  additional  hidden  layers.  The  results 
indicate that for this dataset, simpler configurations yielded 
better results, likely due to the small dataset size or limited 
feature  space,  where  additional  layers  may  introduce 
unnecessary noise instead of improving performance. Among 
all tested models, ResNet-50 achieved the best overall results 
with an accuracy of 96.88% and an F1-Score of 0.9689.

6.3 Time Complexity Evaluation
Time  complexity  evaluation  was  conducted  on  the  best-
performing  configurations  of  ResNet-34,  ResNet-50,  and 
ResNet-101, which are the models without additional hidden 
layers. The devices used were a CPU and a GPU with CUDA 
support. Computation time was measured starting from the 
image transformation process, including resizing the image to 
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(a)

(b)

Figure 4: Graph of Accuracy and F1-Score on ResNet-50 with 
Various Additional Hidden Layers

(a)

(b)
Figure 5: Graph of Accuracy and F1-Score on ResNet-101 with 

Various Additional Hidden Layers
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224x224 pixels, converting the image to a tensor, normalizing 
the  image,  and the  image inference  itself.  The results  are 
shown in Figure 6.

All  models  demonstrated  rapid  computation  times, 
requiring  less  than  one  second  per  image.  However, 
differences in processing times were more pronounced on the 
CPU than  the  GPU.  For  instance,  ResNet-34  was  0.0195 
seconds faster than ResNet-50 and 0.0566 seconds faster than 
ResNet-101 on the CPU. On the GPU, ResNet-34 was only 
0.0096 seconds faster than ResNet-50 and 0.0151 seconds 
faster than ResNet-101.

These differences most likely arise from the complexity 
and  parameter  counts  of  each  model.  ResNet-34,  being  a 
simpler  model,  required  less  processing  time,  whereas 
ResNet-101,  with  its  more  complex  architecture,  had  the 
longest processing time. While smaller models like ResNet-34 
process images faster, the differences in computation time are 
relatively small and unlikely to have a significant impact on 
most real-time applications.

7. Conclusions and Future Study

This study introduces BBG52, a new dataset for plant species 
classification containing 5200 natural images of 52 different 
plant species acquired using a mobile device. Additionally, 
the experiment results demonstrate that manually splitting the 
dataset, with attention to intra-class variation, may result in 
better model performance compared to random splitting, as 
shown by the ResNet-34 achieving 95.12% accuracy and an 
F1-Score of 0.9512 with the manually split dataset. Among 
the tested models, ResNet-50 achieved the highest accuracy of 
96.88%, an F1-Score of 0.9689, and computation times of 
0.1379 seconds on a CPU and 0.0861 seconds on a GPU. The 
findings highlight the potential of deep learning models like 
ResNet  in  automating  plant  species  classification,  which 
could  be  further  applied  in  real-world  scenarios  such  as 
mobile or web applications.

For future studies, the dataset can be expanded by adding 
new species or increasing the number of images per species. 
The dataset also provides opportunities to explore other CNN 
models like MobileNet and EfficientNet,  which may offer 
better  performance  or  faster  computation.  More  complex 
architectures such as Vision Transformer (ViT) could also be 
investigated. Additionally, the dataset could support research 
on advanced machine learning topics like anomaly detection, 
zero-shot  learning,  few-shot  learning,  self-supervised 
learning, continual learning, and open-set recognition.
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