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Abstract

Reliable plant species identification is essential for biodiversity con-
servation, agriculture, and ecological research. However, current
plant species recognition systems often struggle with the rejection of
unknown classes, which limits their applicability in real-world sce-
narios. Typically, the maximum probability score is used to reject
unknown classes, relying solely on the highest output while neglect-
ing the significance of other output scores, which may restrict the
model’s potential. In this research, we propose a novel scoring func-
tion named the Top-K Logit Disparity Score (TKLDS) for open-set
plant species recognition using a Vision Transformer (ViT) network.
We conducted extensive experiments on the VNPLANT200 dataset
consisting of 200 plant species, where the ViT-L/16 model achieved
the highest accuracy in closed-set recognition and the highest Area
Under the Receiver Operating Characteristic curve (AUROC) be-
tween known and unknown classes compared to other state-of-the-art
models, such as ResNet, ConvNeXt, Swin Transformer, and MaxViT.
Our results indicate that tuning the parameter k£ in TKLDS consis-
tently improved the arithmetic mean of closed-set accuracy and AU-
ROC across all pre-trained models. Notably, larger values of k gen-
erally led to better performance, with the ViT-L/16 model yielding
an arithmetic mean score of 0.975 & 0.005 for £ = 4 with 5 com-
binations. These findings demonstrate the potential of TKLDS as a
robust scoring function for open-set recognition tasks, highlighting
its effectiveness in improving performance metrics in plant species
identification.

Keywords: plant species identification; open set recognition; out-of-
distribution detection; deep learning; machine learning

1. Introduction

Biodiversity is the epicenter of sustainable living, affecting
various aspects of human life, including health, livelihood,
agriculture, and other fields such as forestry and biotechnol-
ogy [1]. In urban areas, ecosystems and biodiversity play a
vital role in sustaining urban development by enhancing dis-
aster resilience, improving water and food security, regulating
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temperature, and providing other benefits [2]. Additionally,
Opoku highlights that integrating biodiversity into all devel-
opment projects presents significant opportunities for the built
environment [3]. Marselle et al. suggest that developing bio-
diversity conservation in urban areas is an investment in public
health [4]. Furthermore, biodiversity exposure could enhance
the immune system [5]. In Germany, plant species richness
contributed positively to mental health [6].

Hence, measuring biodiversity—especially plants—is im-
portant, and automatic plant species classification can acceler-
ate the development of biodiversity monitoring systems. This
automation can reduce the laborious manual identification pro-
cess by taxonomists. Traditional identification is very chal-
lenging for professionals such as farmers, foresters, conserva-
tionists, or landscape architects [7]. Additionally, becoming
proficient in the identification of many taxa is difficult [8].

However, existing solutions for automatic species classifica-
tion using deep learning models still focus primarily on clas-
sification performance [9, 10, 11], while lacking the ability
to reject unknown classes. Given the vast number of plant
species [12], it is crucial to develop robust models capable of
identifying classes that were not part of the training set. This
would enhance the model’s robustness in real-world environ-
ments. One way to achieve this is through Open-Set Recog-
nition (OSR), which evaluates performance based on both the
correct classification of known classes and the rejection of un-
known classes.

Many OSR models, however, rely on maximum probability
as the primary score for distinguishing known from unknown
classes [13, 14, 15]. While maximum probability indicates the
class with the most similar features to a sample, information
from other classes could also prove useful in identifying
unknown classes. To address this, we investigate the use of
top logit information to enhance the performance of unknown
class rejection.
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This study introduces a deep learning model for rejecting
unknown classes in plant species classification, using the
Vision Transformer. We propose a novel scoring function,
the Top-K Logit Disparity Score (TKLDS), as an alternative
to maximum probability or logits, which considers multiple
logits to improve the rejection of unknown classes.

The incorporation of multiple logits through TKLDS could
impact OSR models across various domains. In biodiversity
monitoring, it can enhance model robustness by enabling
the rejection of completely unknown classes or serving as
an initial step in identifying new species. In agriculture, it
can improve the reliability of plant disease recognition or
support the collection of new samples for potential emerging
diseases. Therefore, we advocate testing this simple approach
to enhance the performance of any OSR model.

2. Related Works

In deep learning models, Vision Transformer (ViT) has been
employed to identify plant species and has demonstrated
outstanding capability. Pan et al. [16] experimented with
multimodal features using aerial images and geo-location
information.  They improved ViT by concatenating the
embeddings of both features and using a dynamic transformer
encoder that automatically samples the relevant patches and
modifies dynamic attention fusion. The performance achieved
was roughly 73% for large-scale species. However, the
method relies on geo-location data and is not designed for
natural images in canonical positions. Hieu et al. [17]
employed ViT for embedding, with classification performed
using KNN. This simple technique allows for the easy addition
of new classes. Unfortunately, as the number of classes or
samples increases, it contributes to the time complexity of
prediction.

Lee et al. [18] ensembled ViT with ResNet50, DenseNet-
201, and Xception networks (convolution-based networks),
producing an accuracy of approximately 100%. Even though
the performance is flawless, the images in the experimented
dataset are scanned images rather than natural ones, which
may not be suitable for real-world scenarios in an open-
world environment. Dénmez [9] proposed E-ResMLP+ for
addressing wheat species classification by employing ResMLP
with EfficientNetV2b0. The model produced nearly 99% of
the F1-Score. However, this study lacks a comprehensive
comparison with available pre-trained models, which needs
further investigation. Gustineli et al. [19] employed self-
supervised ViT to classify plant species in a multi-label
task. This study is still in the preliminary stage of tackling
the problem in the PlantCLEF 2024 competition. Nhut et
al. [20] employed ViT and BEiT, achieving approximately
99% accuracy for both models, demonstrating the promising
performance of ViT.

Unfortunately, limited studies have emerged that enable
plant species classification to recognize unknown classes. One
of the earliest attempts was conducted by Ghazi et al. [21].
They consolidated GoogLeNet and VGGNet to produce an
averaged score to predict known classes. For identifying
open set samples, they fine-tuned GoogLeNet as a separate
model by solving binary classification problems. Fang et
al. [22] combined a CNN for known class prediction with
Weighted SVDD for single-class recognition of unknown
class prediction. This approach necessitates an extra step
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to construct the OSR model by separate training through
the SVDD model, similar to the study by Ghazi et al.
[21], which was conducted about seven years ago. Ment
et al. [23] extended ARPL by using ViT pretrained on
PlantCLEF2022 and additive margin softmax loss which
provided high accuracy and unkown rejection performance.
However, the number of classes experimented is low, 6 to
15 which may not encapsulate the performance in open-world
where lots of species presents.

Our study experiments with ViT and introduces an alterna-
tive to maximum probability or logits using the TKLDS scor-
ing mechanism. Unlike previous approaches that modify the
architecture or learning mechanism, our method solely utilizes
the logits of trained models. Therefore, TKLDS has the poten-
tial to be applied to any existing OSR model.

3. Vision Transformer

The Vision Transformer (ViT) is inspired by the trans-
former architecture originally developed for machine transla-
tion tasks [24]. Unlike traditional convolutional neural net-
works (CNNs), the ViT model is specifically designed for im-
age classification and omits the decoder component typically
used in transformers for sequence generation. A key innova-
tion of ViT is its departure from convolutional operations, in-
stead utilizing Multi-Layer Perceptrons (MLPs) for local fea-
ture learning and Multi-Head Self-Attention (MSA) mecha-
nisms for capturing global dependencies. This architecture
enables the model to effectively learn and classify images by
leveraging the power of self-attention across the entire patches.
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Figure 1: Vision Transformer model [25]

The ViT model, as illustrated by [25], is depicted in Figure
1. In this model, the original image is divided into learnable
patches, which are then flattened into feature vectors. These
flattened embeddings, before being fed into the transformer
encoder, are augmented with learnable positional embeddings
as denoted in Equation 1. Here, the notation [...] indicates the
concatenation of vectors. The token x.;,ss, representing the
class embedding, serves as a representation of the image .

;2 E] + Epos,

20 = [Iclaeeax E;.

E c R(P ‘C)XD7Epos

The combination of position embeddings and patch linear
projections forms vectors in R(N+DXD " which are then
forwarded to the Transformer Encoder, as shown in Figure
1. The next latent feature is computed based on the previous
layer using Equation 2. Here, the function LN(.) denotes
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Layer Normalization, while MSA(.) represents Multi-Head
Self-Attention, as defined in Equation 8. Subsequently, the
next layer processes Zz; through Layer Normalization (LN)
followed by a Multi-Layer Perceptron (MLP) with a residual
connection, as shown in Equation 3. Finally, the output
prediction is obtained by taking the final output of the first
patch, which is associated with the class embedding x 455, as
presented in Equation 4.

Z = MSA(LN(Zlfl)) + 21-1 )
z1=MLP(LN(%))+ 3)
y=LN(z) )

Back to the Multi-Head Self-Attention (MSA), the process
involves learning the Query (q), Key (k), and Value (v)
vectors as shown in Equation 5. This calculation can be
accelerated through multiplication by Uyy,. The importance
of the features, represented as attention weights A, is derived
from the softmax of the dot product of the query ¢ and key k,
as shown in Equation 6. The weights A are then utilized to
compute the self-attention through the value v using Equation
7. This process mimics obtaining information in information
retrieval, where the query is the input for searching, the key
acts as identifiers or features, and the value contains the
information.

MSA is essentially the repetition of the self-attention
(SA(.)) process with k executions, and the results are
combined and multiplied by the learnable matrix U,,s, to
maintain the same dimensionality for the next layers, as shown
in Equation 8.

[Q7 ka U} = ZUqlmn qu:v € RDXSDh (5)

qk” NxN
A = softmax( ),AeR (6)

VDy
SA(z) = Av @)

MSA(z) =[SA1(2); SA2(2); ...; SAK(2)|Unmsas
Unsa € REPXP - (8)

To enhance the ability of the Vision Transformer (ViT) to
identify unknown classes, we employed transfer learning, us-
ing ViT as a feature extractor to train the classifier. Subse-
quently, the score derived from our proposed function, de-
tailed in the next section, was utilized. The AUROC metric
was then employed to assess the model’s capability in distin-
guishing between known and unknown classes, independent
of any threshold.

4. Proposed Scoring Function:

Disparity Score (TKLDS)
Many OSR techniques utilize either maximum probability or
logit scores exclusively. This approach may be suboptimal,
as it does not incorporate additional informative values. To
address this limitation, we propose a novel scoring mechanism
termed Top-K Logit Disparity Score (TKLDS).

Top-K Logit
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The intuition behind TKLDS is to leverage the disparity
among logits rather than relying solely on the maximum logit,
thereby enhancing the rejection of unknown classes. We
hypothesize that known classes will generate strong activation
on one logit while yielding low activation on others, resulting
in high disparity. Conversely, unknown classes are likely
to activate multiple logits, leading to low disparity. The
maximum logit score serves as the basis for calculating the
disparity with other logits.

The TKLDS is defined in Equation 9. The vector z
represents the sorted logits in descending order, i.e., z; >
Zo > ... 2> zp, where n is the number of logits. The parameter
k denotes the number of logits used in computing the score.
When k = 1, only the maximum logit is considered, resulting
in no disparity score. For & > 1, the mean disparity from z;
is calculated, indicating the utilization of multiple logits. We
will demonstrate in the Results and Discussion section that
TKLDS is more effective than using maximum probability or
logit alone. Furthermore, TKLDS can be applied to any deep
neural network model.

21 ifk=1

. 9)
=1 Zf:z(zl —z) ifk>1

TKLDS(z) = {

5. Experimental Settings

For all experimented models, we utilized the pre-trained
models and make them as feature extractor. We set the epoch
to 50 with learning rate of 0.001 and the ADAM optimizer.
For comparison, we took an epoch with the highest score to
unleash each model potential. We constructed each dataset to
have five different combinations and reported the mean and
standard deviation for each model.

We employ the VNPLANT200 dataset, which represents
medicinal plants in Vietnam. VNPLANT200 consists of
20,000 images across 200 different species, with each species
contributing 100 images, resulting in a balanced dataset. The
images were captured in natural settings.

For the dataset separation, we constructed the set for known
classes and unknown classes without overlapping classes
between them. We divided the dataset into 5 different
combinations in which the first combination use the same
order of the classes provided by the dataset. We provided more
details at our GitHub repository: https://github.com/
gusti-alfarisy/TKLDS

In the first experimentation, we evaluated first the perfor-
mance on maximum probability and logit for each pre-trained
models. Afterwards, we experimented with the proposed
TKLDS by tuning the £ number from 1 to 5. We observed
the performance through CSAAUROC as shown in Equation
10 which is the arithmetic mean between Closed-Set Accu-
racy (CSA) for known classes and Area Under the Receiver
Operating Characteristic curve (AUROC) between known and
unknown classes.

(CSA+ AUROC)
2

CSAAUROC = (10)

6. Results and Discussions
Before applying the Top-K Logit Disparity Score (TKLDS)

to the output scores, we first evaluated all models using
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Table 1: The performance using maximum Logit (L) and maximum Probability (P) accross various pre-trained models

Pre-trained Model CSA (L) CSA (P) AUROC (L) AUROC (P) CSAAUROC (L) CSAAUROC (P) Best Score
ResNet-50 [26] 0.948 +0.007 0.957 +£0.007 0.891 +0.008 0.907 +0.007 0.919 +0.007 0.932 + 0.007 P
ResNet-101 [26] 0.964 + 0.003 0.965 + 0.005 0.888 £ 0.013 0.915 = 0.005 0.926 + 0.006 0.940 + 0.004 P
ResNet-152 [26] 0.955 +0.009 0.961 + 0.005 0.898 £ 0.013 0.913 £ 0.006 0.926 £0.011 0.937 + 0.005 P
ConvNeXt-B [27] 0.974 £ 0.003 0.977 £ 0.003 0.886 £0.012 0.931 £ 0.008 0.930 £ 0.006 0.954 + 0.004 P
ConvNeXt-L [27] 0.973 + 0.005 0.976 + 0.003 0.859 £ 0.018 0.927 +0.008 0.916 +£0.011 0.951 + 0.005 P
ViT-B/32 [25] 0.924 + 0.008 0.925 +0.007 0.878 + 0.005 0.877 = 0.009 0.901 + 0.005 0.901 + 0.008 LandP
ViT-L/32 [25] 0.915 + 0.005 0.917 £ 0.003 0.857 £ 0.011 0.859 + 0.006 0.886 + 0.007 0.888 + 0.004 P
ViT-B/16 [25] 0.975 +0.003 0.975 +0.003 0.926 £ 0.010 0.928 + 0.006 0.951 + 0.006 0.951 + 0.004 Land P
ViT-L/16 [25] 0.987 +0.005 0.985 £ 0.005 0.953 +0.009 0.950 £0.013 0.970 + 0.005 0.968 + 0.006 L
Swin-B [28] 0.965 + 0.005 0.966 + 0.005 0.894 +0.014 0.911 +0.009 0.930 + 0.007 0.939 = 0.006 P
SwinV2-B [29] 0.955 + 0.006 0.956 + 0.007 0.883 £ 0.019 0.899 +£0.013 0.919 £0.012 0.927 + 0.009 P
MaxViT [30] 0.938 + 0.005 0.938 + 0.005 0.849 +0.022 0.887 £0.011 0.893 £0.013 0.913 + 0.008 P
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Figure 2: Scatter plot depicting the accuracy and AUROC performance metrics for all experiments, with each pre-trained model evaluated using 5 distinct

combinations.

maximum logit and probability. This evaluation establishes a
baseline performance between the two scores. Through this
experimentation, we can observe the impact on logits and
probabilities, noting that maximum probability is typically
used to reject unknown classes. However, in subsequent
experiments, this is not the case with TKLDS. Different pre-
trained models were evaluated to assess the consistency of
each scoring method across various architectures.

We denote the accuracy of known classes as Closed-
Set Accuracy (CSA) to distinguish it from the performance
in rejecting unknown classes.  Additionally, we define
CSAAUROC as the arithmetic mean of the CSA and AUROC
scores. For the sake of reproducibility, we published the
source code that is available at: https://github.com/
gusti-alfarisy/TKLDS.

The performance of the pre-trained models in terms of CSA
and AUROC is presented in Table 1. Text in bold style
represents the highest CSAAUROC score achieved from either
logit or probability, while text in underline style denotes the
top five CSAAUROC scores among all pre-trained models.

We observe that all pre-trained models achieved a CSA
above 90% with both maximum logit and maximum probabil-
ity, indicating strong performance in known-class prediction.
In contrast, the AUROC scores varied, ranging from 0.85 to
0.95. Overall, probability-based evaluation (P) yielded supe-
rior performance compared to logit (L) for most pre-trained
models.

The capability of open-set recognition models is reflected
in both CSA and AUROC; thus, CSAAUROC is a crucial
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metric for evaluation. From Table 1, it is evident that
most pre-trained models achieved a CSAAUROC above
0.9, indicating effective open-set recognition based on the
VNPLANT200 dataset. The ViT-L/16 model demonstrated
the highest performance with a CSAAUROC score of 0.97
using logit values, with CSA approximately 99% and AUROC
around 0.95.

Based on the highest CSAAUROC scores, we selected the
top five models for further experimentation with TKLDS.
Using these top models, we aim to assess the effectiveness of
TKLDS, which is expected to provide reliable performance.
This approach also simplifies the comparison process.

Further analysis involves mapping the performance of
each combination to its corresponding pre-trained model, as
illustrated in Figure 2. Figure 2a depicts the prediction
capability using maximum logit, while Figure 2b shows the
results using maximum probability.

From Figure 2a, it is evident that ViT-L/16 achieved
the highest CSA and AUROC compared to other models.
Interestingly, transformer-based networks such as ViT-L/32
and ViT-B/32 exhibited the lowest CSA and AUROC scores.
The "32" in ViT indicates that these models use 32x32 pixel
patches of the input image, whereas the ViT-L/16 model
uses smaller 16x16 pixel patches. Another transformer-based
network, MaxViT, demonstrated slightly higher CSA but
yielded an extremely low AUROC score in both experimental
conditions. In the case of maximum logit, convolution-
based networks showed competitive performance relative to
transformer-based networks, with the exception of ViT-L/16
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Figure 3: Top-K Logit Disparity Score (TKLDS) with different k values compared to the disparity of probability using Resnet101, ConvNeXt-B, ConvNeXt-L,

ViT-B/16, and ViT-L/16.

and ViT-B/16.

In Figure 2b, employing maximum probability reveals
different performance behaviors compared to maximum logit.
ConvNeXt-L achieved the highest AUROC score but exhibited
lower performance in CSA compared to most other models.
Conversely, ViT-L/16 attained the highest CSA but had a lower
AUROC score compared to ConvNeXt-L. The models with
the largest pixel size, ViT-B/32 and ViT-L/32, demonstrated
the worst performance, similar to the results observed with
maximum logit.

Interestingly, the base model (ViT-B/32) outperformed the
larger model (ViT-L/32), despite having fewer parameters and
lower complexity. Additionally, MaxViT did not match the
performance of convolution-based models such as ResNet and
ConvNeXt. From this figure, it is evident that maximum prob-
ability generally indicates higher performance for unknown
class rejection, as observed through the AUROC score. How-
ever, we will demonstrate that this trend does not hold when
TKLDS is applied.

6.1. Top-K Logit Disparity Score versus Probability

The effect of k in the on unknown class rejection perfor-
mance is illustrated in Figure 3. TKLDS with £ > 2 con-
sistently outperforms both maximum probability and the same
calculation with logit. When using a single output, the logit-
based approach generally yields lower performance than the
probability-based method (except for ViT-L/16), with a partic-
ularly pronounced difference in convolution-based networks.
This observation may lead to the biased conclusion that max-
imum probability or single score is a reliable indicator for the
belief system of unknown classes, a perspective commonly
adopted in open-set recognition models [31, 32, 15]. An-
other study utilized the second maximum score for rejecting
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unknown classes without accounting for other logits [33].

Applying TKLDS with higher £ demonstrates an improve-
ment by leveraging top-k logit values as a measure for reject-
ing unknown classes. This indicates that top-k probability val-
ues do not enhance the capability to reject unknown classes.
Instead, it suggests that logits provide more valuable informa-
tion than probabilities. We argue that since probabilities are
derived from softmax normalization, important information is
lost during this process due to the exponential nature of soft-
max, which disregards the linear relationships between output
values obtained from deep learning models.

Table 2: The best CSAAUROC using TKLDS through maximum Logit (L)
and Probability (P)

Pretrained Model L/P k CSAAUROC
ResNet50 L 4 0.937 £0.007
ResNet101 L 4 0.945+0.005
ResNet152 L 4 0.942 +£0.005
ConvNeXt-B L 5 0.959 +£0.005
ConvNeXt-L L 3 0.954 £0.006
ViT-B/16 L 5 0.959 +£0.004
ViT-L/16 L 4 0975 £ 0.005
ViT-B/32 L 5  0.911+£0.008
ViT-L/32 L 4 0.897 £0.005
Swin-B L 4 0.945+0.005
SwinV2-B L 4 0.935+0.010
MaxViT L 5 0.921 +0.008

The best CSAAUROC scores for all pre-trained models
are presented in Table 2. The results clearly indicate that
logits are a better indicator than probabilities, as all models
achieved the highest CSAAUROC scores using logit values.
Furthermore, a higher number of k consistently yielded
improved performance, suggesting that even less dominant
logits contain valuable information for rejecting unknown

16
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classes. A value of k > 4 appears to be a good starting point,
as it provided the best scores for most pre-trained models, as
shown in Table 1.

Regarding pre-trained model performance, ViT-L/16
achieved the highest CSAAUROC score with stable results
(with a standard deviation of 0.005). All pre-trained models
using TKLDS attained approximately 90% in CSAAUROC,
demonstrating robust performance in both known-class classi-
fication and unknown-class rejection. In contrast, models with
larger patch resolutions, such as ViT-L/32, exhibited the worst
performance, whereas the lighter model ViT-B/32 provided
competitive results, as detailed in Table 2.

Using two variants of deep learning models (convolutional
and transformer-based), the performance was competitive on
the VNPLANT?200 dataset. Convolution-based networks gen-
erally produced higher CSAAUROC scores compared to most
transformer-based networks, indicating that many transformer
architectures, despite their advanced design, face challenges in
open-set recognition tasks with plant species datasets. Never-
theless, the Vision Transformer model ViT-L/16 surpassed all
convolution-based networks by approximately 2-4% in terms
of CSAAUROC score. For future research, both ViT-L/16 and
ViT-B/16 should be considered as baseline models for open
plant species recognition tasks.

From this analysis, it is evident that the Top-K Logit Dispar-
ity Score (TKLDS) is a simple yet promising scoring function
that enhances the model’s capability to reject unknown classes.
The advantage of this scoring mechanism is its applicability
across various types of architectures without dependence on a
specific model. We advocate for the use of TKLDS in future
comparative analyses for open-set recognition, particularly in
the context of plant species classification.

7. Conclusions

In this study, we experimented with plant-species recogni-
tion capable of rejecting unknown classes using Vision Trans-
former. Our results suggest that Vision Transformer should
be employed as a baseline for open plant-species recognition.
Furthermore, we proposed a scoring function named Top-K
Logit Disparity Score (TKLDS) as a primary method to iden-
tify unknown classes. We demonstrated that TKLDS improves
the model’s ability to recognize unknown species compared to
maximum probability or logit. TKLDS is a simple yet promis-
ing scoring mechanism that can be applied to any deep learn-
ing model. Our experiments also indicate that a higher number
of k£ with k¥ > 4 in TKLDS unlocks the potential of the pre-
trained model in an open environment. Future research should
explore TKLDS with various deep learning architectures and
different values of K to assess its effectiveness in relation to
model architecture and the number of classes.
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